Abstract Title:

Dioxin formation from waste incineration.

Abstract Source:

Rev Environ Contam Toxicol. 2007;190:1-41. PMID: 17432330

Abstract Author(s):

Takayuki Shibamoto, Akio Yasuhara, Takeo Katami

Article Affiliation:

Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.

Abstract:

There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste samples were burned, were analyzed by gas chromatography/mass spectrometry. Formation of total PCDFs was much higher than that of PCDDs in all samples. The total PCDFs comprised 70%-90% of the total dioxin formed. The amount of total PCDFs formed ranged from 0.78 ng/g (newspaper) to 8,490ng/g (PVC burned in high CO concentration). The amount of total PCDDs formed ranged from 0.02ng/g (newspaper) to 430ng/g (PVC). Coplanar PCBs were found at the lowest level of the dioxins formed. Their formation levels ranged from 0ng/g (newspaper) to 77.6ng/g (PVC). It is obvious that the samples with either inorganic or organic chlorides produced much more dioxins than the sample without chlorides when incinerated under similar conditions. It is not clear how inorganic and organic chloride contribute differently to dioxin formation. Among the metals examined, copper seems to have higher activity toward dioxin formation than other metals. It acted not only as a catalyst but also as a transmitter of heterogeneous chlorine. The toxicity equivalence quantity (TEQ) values generally correlated with the amount of chlorine content in the samples and the amount of dioxin formed in exhaust gases from an incinerator. When the same sample was incinerated at different temperatures, however, the sample burned at low temperature yielded a higher TEQ value than did the sample burned at high temperature. The samples that did not contain chlorine or were not combusted with chlorides exhibited low TEQ values. In contrast, samples with high chlorine content, such as PVC (51.3%), gave high TEQ values. Combustion temperatures may play an important role in dioxin formation in exhaust gases from the incineration of waste materials. However, no significant relationship between dioxin formation and chamber temperatures was reported in the core articles. However, It is obvious that dioxin formation occurred at temperatures above 450'C and was reduced significantly at temperatures above 850 degrees C. The reaction occurring in an incinerator is extremely complex, and there are many factors in addition to combustion temperature influencing dioxin formation. Even though it is possible to hypothesize reasonable formation mechanisms of dioxins produced in exhaust gases according to the results obtained from experiments in classical chemistry, the reactions involved in an incinerator are extremely complex and heterogeneous. More detailed investigation of the many individual factors influencing dioxin formation is needed to find ways to reduce their formation in individual and municipal incinerators.

Study Type : Commentary

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.