n/a
Article Publish Status: FREE
Abstract Title:

Ursolic acid suppresses the biological function of osteosarcoma cells.

Abstract Source:

Oncol Lett. 2019 Sep ;18(3):2628-2638. Epub 2019 Jul 4. PMID: 31404298

Abstract Author(s):

Yi Pei, Yueyan Zhang, Ke Zheng, Guanning Shang, Yuming Wang, Wei Wang, Enduo Qiu, Xiaojing Zhang

Article Affiliation:

Yi Pei

Abstract:

Osteosarcoma is a highly malignant tumour that occurs in adolescents. Upregulation or the constitutive activation of epidermal growth factor receptor (EGFR) is a hallmark of osteosarcoma. To investigate the effect of ursolic acid on the biological function of osteosarcoma, MTT assay was used to detect the effect of ursolic acid on the proliferation of HOS and MG63 cells, while flow cytometry was used to analyse the effect on the cell cycle and apoptosis. Transwell and Matrigel assays were used to detect the effect of ursolic acid on cell migration and invasion, respectively. Western blot analysis and reverse transcription-quantitative polymerase chain reaction were used to detect the effects of different concentrations of ursolic acid on EGFR signaling pathway-related proteins, cell cycle, apoptosis and cell migration-related proteins. After overexpression or silencing of EGFR, the effects of ursolic acid on EGFR pathway and cell biological function were subsequently detected, using the same methods. The present study identified that ursolic acid had inhibitory effects on the growth and metastatic ability of osteosarcoma cells by suppressing EGFR.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.