Abstract Title:

Ursolic acid derivatives as potential antidiabetic agents: In vitro, in vivo, and in silico studies.

Abstract Source:

Drug Dev Res. 2018 Jan 29. Epub 2018 Jan 29. PMID: 29380400

Abstract Author(s):

Ricardo Guzmán-Ávila, Virginia Flores-Morales, Paolo Paoli, Guido Camici, Juan José Ramírez-Espinosa, Litzia Cerón-Romero, Gabriel Navarrete-Vázquez, Sergio Hidalgo-Figueroa, Maria Yolanda Rios, Rafael Villalobos-Molina, Samuel Estrada-Soto

Article Affiliation:

Ricardo Guzmán-Ávila


Hit, Lead&Candidate Discovery Protein tyrosine phosphatase 1B (PTP-1B) has attracted interest as a novel target for the treatment of type 2 diabetes, this because its role in the insulin-signaling pathway as a negative regulator. Thus, the aim of current work was to obtain seven ursolic acid derivatives as potential antidiabetic agents with PTP-1B inhibition as main mechanism of action. Furthermore, derivatives 1-7 were submitted in vitro to enzymatic PTP-1B inhibition being 3, 5, and 7 the most active compounds (IC = 5.6, 4.7, and 4.6 μM, respectively). In addition, results were corroborated with in silico docking studies with PTP-1B orthosteric site A and extended binding site B, showed that 3 had polar and Van der Waals interactions in both sites with Lys120, Tyr46, Ser216, Ala217, Ile219, Asp181, Phe182, Gln262, Val49, Met258, and Gly259, showing a docking score value of -7.48 Kcal/mol, being more specific for site A. Moreover, compound 7 showed polar interaction with Gln262 and Van der Waals interactions with Ala217, Phe182, Ile219, Arg45, Tyr46, Arg47, Asp48, and Val49 with a predictive docking score of -6.43 kcal/mol, suggesting that the potential binding site could be localized in the site B adjacent to the catalytic site A. Finally, derivatives 2 and 7 (50 mg/kg) were selected to establish their in vivo antidiabetic effect using a noninsulin-dependent diabetes mice model, showing significant blood glucose lowering compared with control group (p < .05).

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.