n/a
Article Publish Status: FREE
Abstract Title:

Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats.

Abstract Source:

BMC Neurosci. 2018 05 21 ;19(1):31. Epub 2018 May 21. PMID: 29783956

Abstract Author(s):

Jesús Martínez-Sámano, Alan Flores-Poblano, Leticia Verdugo-Díaz, Marco Antonio Juárez-Oropeza, Patricia V Torres-Durán

Article Affiliation:

Jesús Martínez-Sámano

Abstract:

BACKGROUND: Exposure to electromagnetic fields can affect human health, damaging tissues and cell homeostasis. Stress modulates neuronal responses and composition of brain lipids. The aim of this study was to evaluate the effects of chronic extremely low frequency electromagnetic field (ELF-EMF) exposure, restraint stress (RS) or both (RS + ELF-EMF) on lipid profile and lipid peroxidation in Wistar rat brain.

METHODS: Twenty-four young male Wistar rats were allocated into four groups: control, RS, ELF-EMF exposure, and RS + ELF-EMF for 21 days. After treatment, rats were euthanized, the blood was obtained for quantitate plasma corticosterone concentration and their brains were dissected in cortex, cerebellum and subcortical structures for cholesterol, triacylglycerols, total free fatty acids, and thiobarbituricacid reactive substances (TBARS) analysis. In addition, fatty acid methyl esters (FAMEs) were identified by gas chromatography.

RESULTS: Increased values of plasma corticosterone were found in RS and ELF-EMF exposed groups (p < 0.05), this effect was higher in RS + ELF-EMF group (p < 0.05, vs. control group). Chronic ELF-EMF exposure increased total lipids in cerebellum, and total cholesterol in cortex, but decreased polar lipids in cortex. In subcortical structures, increased concentrations of non-esterified fatty acids were observed in RS + ELF-EMF group. FAMEs analysisrevealed a decrease of polyunsaturated fatty acids of cerebellum and increases of subcortical structures in the ELF-EMF exposed rats. TBARS concentration in lipids was increased in all treated groups compared to control group, particularly in cortex and cerebellum regions.

CONCLUSIONS: These findings suggest that chronic exposure to ELF-EMF is similar to physiological stress, and induce changes on brain lipid profile.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.