n/a
Article Publish Status: FREE
Abstract Title:

Silibinin Ameliorates Formaldehyde-Induced Cognitive Impairment by Inhibiting Oxidative Stress.

Abstract Source:

Oxid Med Cell Longev. 2022 ;2022:5981353. Epub 2022 Jun 16. PMID: 35757504

Abstract Author(s):

Pengsheng Wei, Xue Li, Shuai Wang, Yanxin Dong, Haoran Yin, Zikun Gu, Xiaoting Na, Xi Wei, Jiayu Yuan, Jiahui Cao, Haotian Gao, Yebo Su, Yong Xu Chen, Ge Jin

Article Affiliation:

Pengsheng Wei

Abstract:

Silibinin is a flavonoid extracted from the medicinal plant Silybum marianum (milk thistle), traditionally used to treat liver disease. Recent studies have shown that the antioxidative stress and anti-inflammatory effects of milk thistle are used in the treatment of neurological diseases. Silibinin has antioxidative stress and antiapoptotic effects and reduces cognitive impairment in models of Alzheimer's disease (AD). However, the underlying mechanism of silibinin related to improvement of cognition remains poorly understood. In this study, we used the model of lateral ventricle injection of formaldehyde to examine the related mechanism of silibinin in improving cognitive impairment disorders. Oral administration of silibinin for three weeks significantly attenuated the cognitive deficits of formaldehyde-induced mice in a-maze test and Morris water maze test.-maze results show that silibinin increases the rate of spontaneous response alternation in FA-induced mice. Silibinin increases the target quadrant spending time and decreases escape latency in the Morris water maze test. We examined the effect of silibinin on the NRF2 signaling pathway, and silibinin promoted the nuclear transfer of NRF2 and increased the expression of HO-1 but did not significantly increase the protein expression of NRF2 in the hippocampus. Well, silibinin reduces the content of DHE and decreases the levels of apoptosis of mature neuron cells. We investigated the effect of silibinin on the content of formaldehyde degrading enzymes; biochemical analyses revealed that silibinin increased GSH and ALDH2 in formaldehyde-induced mice. In addition, as one of the pathological changes of AD, TAU protein is also hyperphosphorylated in FA model mice. Silibinin inhibits the expression of GSK-3in model mice, thereby reducing the phosphorylation of TAU proteins ser396 and ser404 mediated by GSK3. Based on our findings, we verified that the mechanism of silibinin improving cognitive impairment may be antioxidative stress, and silibinin is one of the potentially promising drugs to prevent formaldehyde-induced cognitive impairment.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.