Abstract Title:

Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy.

Abstract Source:

Cancer Lett. 2005 Aug 26;226(2):107-13. Epub 2004 Dec 28. PMID: 21276800

Abstract Author(s):

Nagalingam R Sundaresan, Vinodkumar B Pillai, Mahesh P Gupta

Abstract:

Calorie restriction is considered to be the best environmental intervention providing health benefits to mammals. The underlying mechanism of this intervention seems to be controlled by a group of NAD-dependent deacetylases, collectively called sirtuins. In mammals, there are seven sirtuin analogs, SIRT1-SIRT7. The founding member of this family, SIRT1, is shown to protect cardiomyocytes from apoptosis and age-dependent degeneration in a dose dependent manner-protecting cells at low doses but showing detrimental effects at high doses. Studies performed with overexpression or knockdown of SIRT1 indicated that, although it protects cells from oxidative stress and ischemia-reperfusion injury, it promotes hypertrophy of cardiomyocytes. Activation of endogenous SIRT1 by resveratrol also displayed pro-survival and pro-hypertrophic activity of SIRT1. In this article, we review recent findings documenting the role of SIRT1 in regulating cardiac myocyte growth and survival under stress, and the proposed mechanism behind its cardioprotective effects. We also briefly discuss two other sirtuin analogs which have been shown to have cardioprotective effects. This article is part of a Special issue entitled "Key Signaling Molecules Special Issue".

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.