n/a
Article Publish Status: FREE
Abstract Title:

Piperine protects against myocardial ischemia/reperfusion injury by activating the PI3K/AKT signaling pathway.

Abstract Source:

Exp Ther Med. 2021 Apr ;21(4):374. Epub 2021 Feb 19. PMID: 33732347

Abstract Author(s):

Yun-Peng Li, Zhen Chen, Yu-Hua Cai

Article Affiliation:

Yun-Peng Li

Abstract:

Piperine (PIP) exerts numerous pharmacological effects and its involvement in endoplasmic reticulum (ER) stress (ERS)-led apoptosis has garnered attention. The present study focused on whether PIP played protective effects on hypoxia/reoxygenation (H/R)-induced cardiomyocytes by repressing ERS-led apoptosis. The potential molecular mechanisms in association with the PI3K/AKT signaling pathway were investigated. Primary neonatal rat cardiomyocytes (NRCMs) were isolated and randomized into four groups: Control + vehicle group, control + PIP group, H/R + vehicle group and H/R + PIP group. The H/R injury model was constructed by 4 h of hypoxia induction followed by 6 h of reoxygenation. A total of 10µM PI3K/AKT inhibitor LY294002 was supplemented to the cells during the experiments. Cell viability and myocardial enzymes were detected to evaluate myocardial damage. A flow cytometry assay was performed to assess apoptotic response. Western blot analysis was performed to detect the expression ofrelated proteins including PI3K, AKT, CHOP, GRP78 and cleaved caspase-12. The results showed that H/R markedly promoted myocardial damage as shown by the increased release of lactate dehydrogenase and creatine kinase levels, but a reduction in cell viability. In addition, ERS-induced apoptosis was markedly promoted by H/R in NRCMs, as shown by the increased apoptotic rates and expression of C/EBP-homologous protein, endoplasmic reticulum chaperone BiP and caspase-12. PIP administration reversed cell injury and ERS-induced apoptosis in H/R. Mechanistic studies concluded that the apoptosis-inhibitory contributions and cardio-favorable effects of PIP were caused partly by the activation of the PI3K/AKT signaling pathway, which was verified by LY294002 administration. To conclude, PIP can reduce ERS-induced apoptosis by activating the PI3K/AKT signaling pathway during the process of H/R injury, which could be a potential therapeutic target for the treatment of myocardial ischemia/reperfusion injury.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.