Abstract Title:

Diluted honey inhibits biofilm formation: potential application in urinary catheter management?

Abstract Source:

J Clin Pathol. 2016 Sep 26. Epub 2016 Sep 26. PMID: 27672214

Abstract Author(s):

Somadina Emineke, Alan J Cooper, Sarah Fouch, Brian R Birch, Bashir A Lwaleed

Article Affiliation:

Somadina Emineke

Abstract:

AIMS: Biofilms are ubiquitous and when mature have a complex structure of microcolonies in an extracellular polysaccharide and extracellular DNA matrix. Indwelling medical devices harbour biofilms which have been shown to cause infections and act as reservoirs for pathogens. Urinary catheters are often in place for considerable periods of time and are susceptible to both encrustation and biofilm formation. Strategies for minimising biofilm occurrence underpin an active research area in biomedicine. Manuka honey has, inter alia, well-established antibacterial properties. This study aims to assess the influence of honey on early biofilm formation in an established in vitro model.

METHODS: An established model of early biofilm formation using static bacterial cultures in vinyl 96-well plates was used to grow Escherichia coli, strain ATC 25922 and Proteus mirabilis, strain 7002. Planktonic cells were removed and the residual biofilm was stained with crystal violet, which were subsequently eluted and quantified spectrophotometrically. Manuka honey (Unique Manuka Factor 15+) was added either with the bacteria or up to 72 hours after.

RESULTS: Biofilms in this model was developed over 3 days, after which growth stalled. Mixed (1:1) cultures of E. coli and P. mirabilis grew slower than monocultures. In mixed cultures, honey gave a dose-dependent reduction in biofilm formation (between 3.3 and 16.7%w/v). At 72 hours, all concentrations inhibited maximally (p<0.001). Application of honey to cultures after 24 and 48 hours also reduced the adherent bacterial biomass (p<0.05-p<0.01).

CONCLUSION: Manuka honey at dilutions as low as 3.3% w/v in some protocols and at 10% or above in all protocols tested significantly inhibits bacterial attachment to a vinyl substrate and reduces further early biofilm development. No augmentation of growth over untreated controls was observed in any experiment.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.