n/a
Article Publish Status: FREE
Abstract Title:

Concurrent alteration in inflammatory biomarker gene expression and oxidative stress: how aerobic training and vitamin D improve T2DM.

Abstract Source:

BMC Complement Med Ther. 2022 Jun 22 ;22(1):165. Epub 2022 Jun 22. PMID: 35733163

Abstract Author(s):

Rastegar Hoseini, Hiwa Ahmed Rahim, Jalal Khdhr Ahmed

Article Affiliation:

Rastegar Hoseini

Abstract:

BACKGROUND: Vitamin D (Vit D) supplementation and Aerobic Training (AT) exert several beneficial effects such as antioxidant and anti-inflammatory actions. The literature on the effects of AT and Vit D supplementation on the oxidative stress biomarkers and gene expression of inflammatory cytokines in patients with Type 2 Diabetes Mellitus (T2DM) is limited. The present study aimed to examine the effects of AT and Vit D supplementation on inflammation and oxidative stress signaling pathways in T2DM patients.

MATERIALS AND METHODS: In this single-blinded, randomized, placebo-controlled trial, 48 men with T2DM (aged 35-50 years with Body Mass Index (BMI) of 25-30 kg/m2) were randomly allocated into four groups: AT+Vit D (n = 10); AT + placebo (AT; n = 10); Vit D (n = 10), and Control + placebo (C; n = 10). The eight-week AT program was executed for 20-40 min/day, at 60-75% of heart rate maximum(HRmax), for 3 days/wks. The Vit D group received 50,000 IU of Vit D supplement capsules per week for 8 weeks. The serum levels of oxidative stress biomarkers and gene expression of inflammatory cytokines in the Peripheral Blood Mononuclear Cells (PBMCs) were evaluated using the RT-PCR method. Toanalyze the data, paired t-tests and one-way analysis of variance and Tukey's post hoc test were used at the significance level of P < 0.05.

RESULTS: The result shows that serum 25-OH-Vit D, total nitrite, Total Glutathione (GSH), Total Antioxidant Capacity (TAC), Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX) increased; and insulin, Fasting Blood Glucose (FBG), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), High Sensitivity C-Reactive Protein (hs-CRP), Malondialdehyde (MDA), glycated albumin, and Urinary 8-hydroxydeoxyguanine (8-OHdG) decreased significantly in all groups after 8 weeks, except for C. In addition, results of RT-PCR showed that AT+Vit D, Vit D, and AT significantly downregulated the gene expression of Tumor Necrosis Factor-Alpha (TNF-α), Interleukin-1 Beta (IL-1β), Mitogen-Activated Protein Kinases 1 (MAPK1), Nuclear Factor Kappa B (NF-κB) 1 (p50). It also upregulated Interleukin-4 (IL-4) gene expression, Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) in T2DM patients compared to the C.

CONCLUSION: Additionally, the AT+Vit D group showed significantly lower insulin, FBG, HOMA-IR, hs-CRP, MDA, glycated albumin, urinary 8-OHdG, IL-1β, TNF-α, MAPK1, and NF-κB1 (p50) levels and significantly higher serum 25-OH-Vit D, total nitrite, GSH, TAC, CAT, SOD, GPX, IL-4, and PPAR-γ levels compared to the AT and Vit D groups. In T2DM patients, 8 weeks of AT+Vit D had a more significant impact on certain gene expressions related to inflammation and oxidative stress than Vit D or AT alone.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.