n/a
Article Publish Status: FREE
Abstract Title:

First-Trimester Urinary Bisphenol A Concentration in Relation to Anogenital Distance, an Androgen-Sensitive Measure of Reproductive Development, in Infant Girls.

Abstract Source:

Environ Health Perspect. 2017 07 11 ;125(7):077008. Epub 2017 Jul 11. PMID: 28728138

Abstract Author(s):

Emily S Barrett, Sheela Sathyanarayana, Omar Mbowe, Sally W Thurston, J Bruce Redmon, Ruby H N Nguyen, Shanna H Swan

Article Affiliation:

Emily S Barrett

Abstract:

INTRODUCTION: Evidence from animal models suggests that prenatal exposure to bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is associated with adverse reproductive outcomes in females. Exposure during early gestation, a critical period for reproductive development, is of particular concern. Anogenital distance (AGD) is a sensitive biomarker of the fetal hormonal milieu and a measure of reproductive toxicity in animal models. In some studies, the daughters of BPA-exposed dams have shorter AGD than controls. Here, we investigate this relationship in humans.

METHODS: BPA was assayed in first-trimester urine samples from 385 participants who delivered infant girls in a multicenter pregnancy cohort study. After birth, daughters underwent exams that included two measures of AGD (AGD-AC: distance from center of anus to clitoris; AGD-AF: distance from center of anus to fourchette). We fit linear regression models to examine the association between specific gravity-adjusted (SPG-adj) maternal BPA concentrations and infant AGD, adjusting for covariates.

RESULTS: BPA was detectable in 94% of women. In covariate-adjusted models fit on 381 eligible subjects, the natural logarithm of SpG-adj maternal BPA concentration was inversely associated with infant AGD-AC [β=−0.56, 95% confidence interval (CI): −0.97, −0.15]. We observed no association between maternal BPA and infant AGD-AF.

CONCLUSION: BPA may have toxic effects on the female reproductive system in humans, as it does in animal models. Higher first-trimester BPA exposure was associated with significantly shorter AGD in daughters, suggesting that BPA may alter the hormonal environment of the female fetus. https://doi.org/10.1289/EHP875.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.