Abstract Title:

Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity.

Abstract Source:

J Periodontal Res. 2016 Aug 23. Epub 2016 Aug 23. PMID: 27549582

Abstract Author(s):

A Ben Lagha, D Grenier

Article Affiliation:

A Ben Lagha

Abstract:

BACKGROUND AND OBJECTIVE: Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed.

MATERIAL AND METHODS: Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay.

RESULTS: Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9.

CONCLUSION: This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.