Abstract Title:

Genotoxic effects of environmental estrogen-like compounds in CHO-K1 cells.

Abstract Source:

Mutat Res. 2008 Jan 8;649(1-2):114-25. Epub 2007 Aug 19. PMID: 17913570

Abstract Author(s):

Sumiko Tayama, Yoshio Nakagawa, Kuniaki Tayama

Article Affiliation:

Department of Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan. [email protected]

Abstract:

Some environmental estrogen-like compounds, such as bisphenol A (BPA), 4-nonylphenol (NP), 4-octylphenol (OP), propyl p-hydroxybenzoate (P-PHBA), and butyl p-hydroxybenzoate (B-PHBA), synthetic estrogen, diethylstilbestrol (DES), and natural estrogen, 17beta-estradiol (E2), were studied for their genotoxicity in CHO-K1 cells using sister-chromatid exchange (SCE), chromosome aberration (CA), and DNA strand break (comet) assays. Six of the chemicals, excluding E2, caused DNA migration in the comet assay and induced SCEs at one or more of the highest doses. Among the chemicals, OP produced an especially high incidence of SCEs. Structural CA was induced by five of the chemicals, excluding OP and NP, and BPA, E2, and DES also induced aneuploid cells. E2 and DES particularly increased the rate of polyploidy at high doses. The incidence of colchicine-mitosis-like (c-mitotic) figures suggesting spindle disrupting effects was also detected with five of the chemicals, excluding OP and NP, and six of the chemicals, excluding E2, caused endoreduplication (ERD), a form of nuclear polyploidization induced by block of cell cycle at G2 phase, at one or more high doses. Our present results suggest that OP and NP cause repairable DNA damage, including SCEs, and do not result in CA, while the damage caused by DES, BPA, P-PHBA, and B-PHBA results in the induction of CAs together with SCEs probably because of imperfect repair. We are unable to explain the observation that the DNA damage caused by E2 resulted in CA induction but not DNA migration or SCE induction, except for speculating that the DNA damage is different from that caused by DES and the estrogen-like chemicals. Our findings also suggest that E2, DES and BPA have aneuploidogenic properties, and that the former two of chemicals also are polyploidy-inducing agents.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.