n/a
Abstract Title:

Astaxanthin attenuated pressure overload-induced cardiac dysfunction and myocardial fibrosis: Partially by activating SIRT1.

Abstract Source:

Biochim Biophys Acta. 2017 Mar 12. Epub 2017 Mar 12. PMID: 28300638

Abstract Author(s):

Jun Zhang, Quan-Zhen Wang, Shao-Hua Zhao, Xiang Ji, Jie Qiu, Jian Wang, Yi Zhou, Qian Cai, Jie Zhang, Hai-Qing Gao

Article Affiliation:

Jun Zhang

Abstract:

BACKGROUND: Myocardial fibrosis contributes to cardiac dysfunction. Astaxanthin (AST), a member of the carotenoid family, is a well-known antioxidant, but its effect on and underlying mechanisms in myocardial fibrosis are poorly understood.

METHODS: In vivo, myocardial fibrosis and cardiac dysfunction were induced using transverse aortic constriction (TAC). AST was administered to mice for 12weeks post-surgery. In vitro, transforming growth factorβ1 (TGF-β1) was used to stimulate human cardiac fibroblasts (HCFs). EX-527 (6-chloro-2, 3, 4, 9-tetrahydro-1H-carbazole-1-carboxamide) and SIRT1 siRNA were used to inhibit SIRT1 in vivo and in vitro, respectively. The effects of AST on cardiac function and fibrosis were determined. SIRT1 expression and activity were measured to explore the mechanisms underlying its effects.

RESULTS: AST improved cardiac function and attenuated fibrosis. Receptor activated-SMADs (R-SMADs), including SMAD2 and SMAD3, played important roles in these processes. The TAC surgery-induced increases in the expression of phosphorylated and acetylated R-SMADs were attenuated by treatment with AST, the translocation and transcriptional activity of R-SMADs were also restrained. These effects were accompanied by an increase in the expression and activity of SIRT1. Inhibiting SIRT1 attenuated the acetylation and transcriptional activity of R-SMADs, but not their phosphorylation and translocation.

CONCLUSIONS: Our data demonstrate that AST improves cardiac function and attenuates fibrosis by decreasing phosphorylation and deacetylation of R-SMADs. SIRT1 contributes to AST's protective function by reducing acetylation of R-SMADs.

GENERAL SIGNIFICANCE: These data suggest that AST may be useful as a preventive/therapeutic agent for cardiac dysfunction and myocardial fibrosis.

Study Type : Human In Vitro

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.