n/a
Article Publish Status: FREE
Abstract Title:

Arctigenin Inhibits Etoposide Resistance in HT-29 Colon Cancer Cells during Microenvironmental Stress.

Abstract Source:

J Microbiol Biotechnol. 2019 Apr 28 ;29(4):571-576. PMID: 30955254

Abstract Author(s):

Sae-Bom Yoon, Hae-Ryong Park

Article Affiliation:

Sae-Bom Yoon

Abstract:

Microenvironmental stress, which is naturally observed in solid tumors, has been implicated in anticancer drug resistance. This tumor-specific stress causes the degradation of topoisomerase IIα, rendering cells resistant to topoisomerase IIα-targeted anticancer agents. In addition, microenvironmental stress can induce the overexpression of 78kDa glucose regulated protein (GRP78), which can subsequently block the activation of apoptosis induced by treatment with anticancer agents. Therefore, inhibition of topoisomerase IIα degradation and reduction in GRP78 expression may be effective strategies for inhibiting anticancer drug resistance. In this study, we investigated the active compound arctigenin, which inhibited microenvironmental stress-induced etoposide resistance in HT-29 cells. Arctigenin was also highly toxic to etoposide-resistant HT-29 cells, with an ICvalue of 10μM for colony formation. We further showed that arctigenin inhibited the degradation of topoisomerase IIα and reduced the expression of GRP78. Thus, these results suggest that arctigenin is a novel therapeutic agent that inhibits resistance to etoposide associated with microenvironmental stress conditions.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.