n/a
Abstract Title:

Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice.

Abstract Source:

J Agric Food Chem. 2021 Jun 23 ;69(24):6829-6841. Epub 2021 Jun 14. PMID: 34124904

Abstract Author(s):

Deming Li, Yuan Cui, Xinjing Wang, Fang Liu, Xinli Li

Article Affiliation:

Deming Li

Abstract:

Our previous study showed that apple polyphenol extract (APE) ameliorated high-fat diet-induced hepatic steatosis in C57BL/6 mice by targeting the LKB1/AMPK pathway; to investigate whether other mechanisms are involved in APE induction of improved hepatic steatosis, especially the roles of bile acid (BA) metabolism and gut microbiota, we conducted this study. Thirty-three C57BL/6 male mice were fed with high-fat diet for 12 weeks and concomitantly treated with sterilized water (CON) or 125 or 500 mg/(kg·bw·day) APE (low-dose APE, LAP; high-dose APE, HAP) by intragastric administration. APE treatment decreased total fecal BA contents, especially fecal primary BA levels, mainly including cholic acid, chenodeoxycholic acid, and muricholic acid. An upregulated hepatic Farnesoid X receptor (FXR) protein level and downregulated protein levels of cholesterol 7α-hydroxylase (CYP7A1) and cholesterol 7α-hydroxylase (CYP27A1) were observed after APE treatment, which resulted in the suppressed BA synthesis. Meanwhile, APE had no significant effects on mucosal injury and FXR expression in the jejunum. APE regulated the diversity of gut microbiota and microbiota composition, characterized by significantly increased relative abundance ofand decreased relative abundance of. Furthermore, APE might affect the reverse cholesterol transport in the ileum, evidenced by the changed mRNA levels of NPC1-like intracellular cholesterol transporter 1 (), liver X receptor (), ATP binding cassette subfamily A member 1 (), and ATP binding cassette subfamily G member 1 (). However, APE did not affect the dihydroxylation and taurine metabolism of BA. The correlation analysis deduced no obvious interactions between BA and gut microbiota. In summary, APE, especially a high dose of APE, could alleviate hepatic steatosis, and the mechanisms were associated with inhibiting BA synthesis and modulating gut microbiota.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.