n/a
Abstract Title:

Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa.

Abstract Source:

Int J Antimicrob Agents. 2017 Oct ;50(4):512-522. Epub 2017 Jun 29. PMID: 28669838

Abstract Author(s):

Antu Das, Junaid Jibran Jawed, Manash C Das, Padmani Sandhu, Utpal C De, Biswanath Dinda, Yusuf Akhter, Surajit Bhattacharjee

Article Affiliation:

Antu Das

Abstract:

Visceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis, caused by the protozoan parasite Leishmania donovani. Nowadays there is a growing interest in the therapeutic use of natural products to treat parasitic diseases. Sterculia villosa is an ethnomedicinally important plant. A triterpenoid was isolated from this plant and was screened for its antileishmanial and immunomodulatory activities in vitro and in vivo. Biochemical colour test and spectroscopic data confirmed that the isolated pure compound was lupeol. Lupeol exhibited significant antileishmanial activity, with ICvalues of 65 ± 0.41 µg/mL and 15 ± 0.45 µg/mL against promastigote and amastigote forms, respectively. Lupeol caused maximum cytoplasmic membrane damage of L. donovani promastigote at its ICdose. It is well known that during infection the Leishmania parasite exerts its pathogenicity in the host by suppressing nitric oxide (NO) production and inhibiting pro-inflammatory responses. It was observed that lupeol induces NO generation in L. donovani-infected macrophages, followed by upregulation of pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Lupeol was also found to reduce the hepatic and splenic parasite burden through upregulation of the pro-inflammatory response in L. donovani-infected BALB/c mice. Strong binding affinity of lupeol was observed for four major potential drug targets, namely pteridine reductase 1, adenine phosphoribosyltransferase, lipophosphoglycan biosynthetic protein and glycoprotein 63 of L. donovani, which also supported its antileishmanial and immunomodulatory activities. Therefore, the present study highlights the antileishmanial and immunomodulatory activities of lupeol in an in vitro and in vivo model of VL.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.