Sourced from the US National Library of Medicine
http://pubmed.gov

Research Topic
Ginger

This Smart Search PDF was created based on 1 research topic. There are a total of 184 unique research articles on GreenMedInfo.com in regard to your search topic, all compiled in this research document.

The GMI-Pub system automates the natural medical research retrieval process by creating an individualized document that matches your search requirements in order to fit the needs of real people, in real time.

Our technology pulls from the equivalent of 20,454+ years of scientific experimental labor and pulls results based on variables the user decides are relevant.

Below you will find compelling research hard-referenced to peer-reviewed biomedical research sourced from the US National Library of Medicine. For more research on over 6000 validated topics, please visit http://GreenMedInfo.com/research-dashboard

Overview of Terms
Associated with Your Search Topic

183 Relevant Results for Diseases

<table>
<thead>
<tr>
<th>Disease/Symptom</th>
<th>Cumulative Knowledge</th>
<th>Article Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes Mellitus: Type 2</td>
<td>67</td>
<td>10</td>
</tr>
<tr>
<td>Chemotherapy-Induced Nausea</td>
<td>51</td>
<td>6</td>
</tr>
<tr>
<td>Dysmenorrhea</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>Diabetes Mellitus: Type 2: Prevention</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>Osteoarthritis: Knee</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>Insulin Resistance</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>Diabetes Mellitus: Type 1</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Muscle Soreness</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Chronic Pain</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes: Glycation/A1C</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>High Cholesterol</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Nausea</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Inflammation</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Diabetes Mellitus: Type 1: Prevention</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Oxidative Stress</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Anxiety: Preoperative</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Bleeding: Excessive</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Breast Milk: Inadequate/Poor Quality</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>C-Reactive Protein</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>C-Reactive Protein (CRP)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular Disease: Prevention</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>Page</td>
<td>Line</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Cesarean Section</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Chemotherapy-Induced Toxicity</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cholesterol: High</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cognitive Decline/Dysfunction</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Delayed Gastric Emptying</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Gastroparesis</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Migraines</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Morning Sickness</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Motion Sickness</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Muscle Damage</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Muscle Soreness: Exercise-Induced</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Naseau: Chemotherapy-Induced</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Naseau: Pregnancy-Associated</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Nausea: Post-Operative</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Nausea: Sea-Sickness</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Neurogenic Bladder</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Overweight</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Premenopausal Disorders</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Quality of Life: Poor</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory Distress Syndrome</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Stroke: PostStroke Urinary Disorders</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Triglycerides: Elevated</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>Count 1</td>
<td>Count 2</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Uterine Bleeding</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Vertigo</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Weight Problems: Appetite</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Pancreatic Cancer</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Cancers: All</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Diabetic Complications</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Liver Cancer: Prevention</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Parabens-Associated Toxicity</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Arsenic Poisoning</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Brain Inflammation</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cancers</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Carcinoma: Non-Small-Cell Lung</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory Syncytial Virus Infections</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Arthritis: Rheumatoid</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Brain Damage</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Chemically-Induced Liver Damage</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Chemotherapy-Induced Toxicity: Cisplatin</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes: Cardiovascular Illness</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes: Kidney Function</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Fructose-Induced Toxicity</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Metabolic Syndrome X</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Condition</td>
<td>Level 1</td>
<td>Level 2</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Obesity</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Radiation Induced Illness</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cerebral Ischemia</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Dog Diseases</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gastric Cancer</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gastric Ulcer</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gastroesophageal Reflux</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Neurodegenerative Diseases</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pets: Heartworm</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ALT: Elevated</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AST: Elevated</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Acetaminophen (Tylenol) Toxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Acid Reflux</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol Toxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Allergic Rhinitis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Allergic Rhinitis: Prevention</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aluminum Toxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bacterial Infections: Resistance/Biofilm Formation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Brain: Microglial Activation</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bromobenzene Toxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cadmium Poisoning</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cancer Metastasis</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Exposure</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chemotherapy-Induced Toxicity: Doxorubicin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cholesterol: LDL/HDL ratio</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cytomegalovirus Infections</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes: Cognitive Dysfunction</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>Category 1</td>
<td>Category 2</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Diabetic Glomerular Hypertrophy</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Encephalomyelitis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Endocrine Imbalances</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Esophageal Cancer</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Excitotoxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fat Malabsorption</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Gout</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>HIV Infections</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>HSV-1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Helicobacter Pylori Infection</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>High Fat Diet</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hyperinsulinism</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hyperuricemia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Indigestion: Fats</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kidney Damage</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kidney Damage: Chemically-Induced</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kidney Failure</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kidney Failure: Acute</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kidney Failure: Chronic</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lipopolysaccharide-Induced Toxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Liver Fibrosis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Liver Stress: Fructose-Induced</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Malabsorption Syndrome</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Memory Disorders</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Microvilli atrophy</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Morphine Tolerance/Dependence</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Multiple Sclerosis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pain</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>Location</td>
<td>Category</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Pesticide Toxicity</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pyelonephritis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Staphylococcus aureus infection</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Steatorrhea</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Trigeminal Neuralgia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Uremia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Advanced Glycation End products (AGE)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Advanced Glycation Endproduct (AGE) Formation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Allergic Airway Diseases</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Allergies</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bacillus Cereus infection</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cancers: Drug Resistant</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular Diseases</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Central Nervous System Diseases</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cholesterol: Oxidation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chronic Disease</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Colic</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Enterococcus Infections</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Epstein-Barr Virus Infections</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Escherichia coli Infections</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fatty Liver</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Foodborne Pathogens: Prevention/Food Preservation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gastrointestinal Cancer</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydatidosis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pharmacological Action Name</td>
<td>Cumulative Knowledge</td>
<td>Article Count</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Analgesics</td>
<td>74</td>
<td>7</td>
</tr>
<tr>
<td>Anti-Inflammatory Agents</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>Antioxidants</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>Hypoglycemic Agents</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>Insulin Sensitizers</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>Apoptotic</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Category</td>
<td>Count</td>
<td>Adjusted Count</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>Gastrointestinal Agents</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Tumor Necrosis Factor (TNF) Alpha Inhibitor</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Aldose reductase inhibitor</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Antiemetics</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Antiproliferative</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Neuroprotective Agents</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Antineoplastic Agents</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Hypolipidemic</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Nitric Oxide Inhibitor</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Renoprotective</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Chemotherapeutic</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Malondialdehyde Down-regulation</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>NF-kappaB Inhibitor</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Anticholesteremic Agents</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Chemopreventive</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Galactogogue</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Thermogenic</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Vasopressin Inhibitor</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Antiviral Agents</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Hepatoprotective</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Radioprotective</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Antiparasitic Agents</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Superoxide Dismutase Up-regulation</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Tumor Suppressor Protein p53 Upregulation</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Anti-Bacterial Agents</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Anti-metastatic</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Anticarcinogenic Agents</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Bcl-2 protein down-regulation</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Category</td>
<td>Count1</td>
<td>Count2</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Caspase-3 Activation</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Cyclooxygenase 2 Inhibitors</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>P21 Activation</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Antihypertensive Agents</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Antiprotozoal Agents</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cell cycle arrest</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Glutathione Upregulation</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Immunomodulatory</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Insulin-releasing</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Malonaldehyde (MDA) Down-Regulation</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Interleukin-1 beta downregulation</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Anti-Allergic Agents</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Anti-Angiogenic</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Anti-Glycation Agents</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Antigiardial agents</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Autophagy Up-regulation</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bax/Bcl2 Ratio: Decrease</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Calcium Channel Blockers</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chemosensitizer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cytoprotective</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Detoxifier</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Enzyme Inhibitors: Pancreatic Lipase</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Gastroprotective</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Immunostimulatory</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Interleukin-10 downregulation</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Prophylactic Agents</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Prostaglandin Antagonists</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Proton Pump Inhibitor</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Substance Name</td>
<td>Cumulative Knowledge</td>
<td>Article Count</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Turmeric</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Gingerol</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Cardamom</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Artichoke</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Garlic</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6-Shogaol</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Ayurvedic Formulations</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Lavender</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Orange</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Peppermint</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Protein Supplement</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Saffron</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Spearmint</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Vitamin B-6</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Black Pepper</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Catechols</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Zerumbone</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Capsaicin</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Curcumin</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Peony</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Piperine</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Chinese Skullcap</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Clove</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Licorice</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pinellia</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Red Pepper</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Arabic gum</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bupleurum</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Coriandor</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cumin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Curcuminoids</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ginseng</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Green Tea</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Japanese Herbal Formula: Sho-saiko-to</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Jujube</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nutmeg</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Onion</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Thyme</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Turmeric: Volatile Oils</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vitamin E</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Anise</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Apple Polyphenols</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ashwagandha</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Asparagus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bay leaf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beans: All</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Black Currant</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Capparis spinosa (caper)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cilantro</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cruciferous Vegetables</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Curcuma Longa</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EGCG (Epigallocatechin gallate)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Garcinia kola</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gotu Kola</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grape</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Indian Gooseberry</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Juniper</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Long Pepper</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mint</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyword Name</td>
<td>Cumulative Knowledge</td>
<td>Article Count</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Plant Extracts</td>
<td>148</td>
<td>52</td>
</tr>
<tr>
<td>Significant Treatment Outcome</td>
<td>54</td>
<td>7</td>
</tr>
<tr>
<td>Natural Substances Versus Drugs</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td>Phytotherapy</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>Superiority of Natural Substances versus Drugs</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>Essential Oils</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Risk Reduction</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Ibuprofen Alternatives</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Supplementation</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Biotransformation</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Fresh Versus Dried Potencies</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Dose Response</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Therapeutic Action Name</td>
<td>Cumulative Knowledge</td>
<td>Article Count</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Aromatherapy</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>Exercise</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Integrative Medicine</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Gene Expression Regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Substance Synergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Obesity Agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antineoplastic Agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical: Lindane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Synergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food as Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulinotrophic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malathion Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Substance/Drug Synergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrient Absorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Oils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevacid (Lansoprazole) Alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Treatment Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic Resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoptosis Regulatory Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy Resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit Juice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Drug Resistant Pathogens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradols</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 Relevant Results for Problem Substances

<table>
<thead>
<tr>
<th>Problem Substance Name</th>
<th>Cumulative Knowledge</th>
<th>Article Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Hydroxychloroquine sulfate</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Fructose</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Endocrine Disrupting Chemicals (EDCs)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lindane</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

View the Evidence.

184 Research Articles in Total.

Category : Diseases

ALT: Elevated (AC 1) (CK 2)

Ginger protects against liver fibrosis.

Article Published Date : Jan 01, 2011

Authors : Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : ALT: Elevated : CK(70) : AC(11), AST: Elevated : CK(46) : AC(6), Liver Fibrosis : CK(246)
Ginger protects against liver fibrosis.

Article Published Date: Jan 01, 2011

Authors: Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser

Study Type: Animal Study

Additional Links

Substances: Ginger

Acetaminophen (Tylenol) Toxicity (AC 1) (CK 2)

Ginger protects against acetaminophen-induced acute liver injury by enhancing liver antioxidant status.

Article Published Date: Nov 01, 2007

Authors: T A Ajith, U Hema, M S Aswathy

Study Type: Animal Study

Additional Links
Acid Reflux (AC 1) (CK 2)

Ginger has a gastroprotective effect through its acid blocking and anti-Helicobacter pylori activity.

Pubmed Data: Evid Based Complement Alternat Med. 2009 Jul 1. PMID: 19570992
Article Published Date: Jul 01, 2009
Authors: Siddaraju M Nanjundaiah, Harish Nayaka Mysore Annaiah, Shylaja M Dharmesh
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Additional Keywords: Natural Substances Versus Drugs: CK(1698): AC(302), Prevacid (Lansoprazole) Alternatives: CK(6): AC(3)

Advanced Glycation End products (AGE) (AC 1) (CK 1)

Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

Article Published Date: Feb 14, 2016
Authors: Chethan Sampath, Yingdong Zhu, Shengmin Sang, Mohamed Ahmedna
Study Type: In Vitro Study

Additional Links

Advanced Glycation Endproduct (AGE) Formation (AC 1) (CK 1)

These findings showed the potential effects of 6S and 6G on the prevention of protein glycation.

Article Published Date: Aug 05, 2015

Authors: Yingdong Zhu, Yantao Zhao, Pei Wang, Mohamed Ahmedna, Shengmin Sang

Study Type: In Vitro Study

Additional Links

Pharmacological Actions: Anti-Glycation Agents: CK(46): AC(19)

Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Alcohol Toxicity (AC 1) (CK 2)

Ginger extract improved antioxidant enzymes activity and reduced tHcy and MDA levels.

Article Published Date: Apr 30, 2016
Allergic Airway Diseases (AC 1) (CK 1)

An extract of Z. cassumunar and its constituent should be benefit to ameliorate inflammation and hypersensitiveness of airway epithelium.

Allergic Rhinitis (AC 1) (CK 2)

Ginger and constituent 6-gingerol could be used the prevention or alleviation of allergic rhinitis symptoms.

Pubmed Data: J Nutr Biochem. 2015 Sep 1. Epub 2015 Sep 1. PMID: 26403321
Ginger and constituent 6-gingerol could be used the prevention or alleviation of allergic rhinitis symptoms.

Article Published Date: Aug 31, 2015

Authors: Yoshiyuki Kawamoto, Yuki Ueno, Emiko Nakahashi, Momoko Obayashi, Kento Sugihara, Shanlou Qiao, Machiko Iida, Mayuko Y Kumasaka, Ichiro Yajima, Yuji Goto, Nobutaka Ohgami, Masashi Kato, Kozue Takeda

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Allergic Rhinitis : CK(392) : AC(52), Allergic Rhinitis: Prevention : CK(12) : AC(2)

Pharmacological Actions: Anti-Allergic Agents : CK(167) : AC(61), Immunomodulatory : CK(1287) : AC(358)
hypersensitiveness of airway epithelium.

Article Published Date: Feb 28, 2015
Authors: Orapan Poachanukoon, Ladda Meesuk, Napaporn Pattanacharoenchai, Paopanga Monthanapisut, Thaweephol Dechatiwongse Na Ayudhya, Sittichai Koontongkaew
Study Type: In Vitro Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Pharmacological Actions: Anti-Inflammatory Agents: CK(4861) : AC(1630), Enzyme Inhibitors: CK(473) : AC(251), Matrix metalloproteinase-9 (MMP-9) inhibitor: CK(212) : AC(128)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

Ginger protects against reproductive toxicity of aluminium chloride in rats.

Article Published Date: Jul 26, 2011
Authors: Wa Moselhy, Na Helmy, Br Abdel-Halim, Trm Nabil, Mi Abdel-Hamid
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Aluminum Toxicity: CK(207) : AC(75)

Alzheimer's Disease (AC 3) (CK 5)

6-gingerol may be useful in the prevention and treatment of alzheimer's disease.

A combination of ginger and peony root may prevent memory impairment in AD by inhibiting Aβ accumulation and inflammation in the brain.

Long-term consumption of aromatic compounds from spices could be effective in the prevention of Alzheimer's disease.
Anxiety: Preoperative (AC 1) (CK 10)

Lavender and ginger oil reduce distress levels in children before undergoing anesthesia.

Article Published Date: Oct 01, 2009

Authors: DeeAnn Nord, John Belew

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Lavender : CK(363) : AC(45)

Diseases: Anxiety: Preoperative : CK(30) : AC(3)

Therapeutic Actions: Aromatherapy : CK(652) : AC(65)

Arsenic Poisoning (AC 3) (CK 5)

"6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice."

Article Published Date: Jan 10, 2012

Authors: Debrup Chakraborty, Avinaba Mukherjee, Sourav Sikdar, Avijit Paul, Samrat Ghosh, Anisur Rahman Khuda-Bukhsh

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Arsenic Poisoning : CK(160) : AC(49), Insulin Resistance : CK(1683) : AC(346)

Pharmacological Actions: Insulin Sensitizers : CK(350) : AC(70)

Ginger, Garlic, Clove, and Anise (in order of efficacy) reduce the adverse effects of arsenite in mouse bone marrow cells.
Turmeric and ginger were effective in eliminating arsenic from the body but could protect from possible damage caused by arsenic exposure.

Ginger contains compounds with significant joint-protective effects in experimental rheumatoid arthritis.
Ginger extract is superior to the NSAID drug indomethacin in a rat model of rheumatoid arthritis.

Article Published Date: Mar 01, 2009

Authors: Abdel-Motaal M Fouda, Mohamed Y Berika

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Arthritis: Rheumatoid : CK(307) : AC(55)

Additional Keywords: Food as Medicine : CK(18) : AC(6), Superiority of Natural Substances versus Drugs : CK(1316) : AC(251)

Bacillus Cereus infection (AC 1) (CK 1)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014

Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type: In Vitro Study

Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475), Antimicrobial : CK(293) : AC(128), Antioxidants : CK(7529) : AC(2262)

Additional Keywords: Essential Oils : CK(181) : AC(69), Natural Substance Synergy : CK(540) : AC(249)
Bacterial Infections: Resistance/Biofilm Formation (AC 2) (CK 2)

Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.

Article Published Date: Jul 31, 2012
Authors: Ponmurugan Karuppiah, Shyamkumar Rajaram
Study Type: Bacterial
Additional Links
Substances: Garlic: CK(722) : AC(226), Ginger: CK(696) : AC(184)

The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and Leek, Allium porrum L.

Article Published Date: Feb 28, 2013
Authors: Sergio Casella, Michele Leonardi, Bernardo Melai, Filippo Fratini, Luisa Pistelli
Study Type: Bacterial
Additional Links
Substances: Garlic: CK(722) : AC(226), Ginger: CK(696) : AC(184)
Diseases: Bacterial Infections: Resistance/Biofilm Formation: CK(309) : AC(120)
Additional Keywords: Multi-Drug Resistant Pathogens: CK(16) : AC(15)

Bleeding: Excessive (AC 1) (CK 10)

Ginger is an effective supplement for heavy menstrual
bleeding.

Article Published Date : Oct 07, 2014

Authors : Farzaneh Kashefi, Marjan Khajehei, Mohammad Alavinia, Ebrahim Golmakani, Javad Asili

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Bleeding: Excessive : CK(12) : AC(2), Menorrhagia : CK(32) : AC(5), Uterine Bleeding : CK(20) : AC(1)

Brain Damage (AC 2) (CK 4)

Ginger mitigates damage and improves memory impairment in focal cerebral ischemia.

Article Published Date : Jan 01, 2011

Authors : Jintanaporn Wattanathorn, Jinatta Jittiwat, Terdthai Tongun, Supaporn Muchimapura, Kornkanok Ingkaninan

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Brain Damage : CK(93) : AC(44), Cerebral Ischemia : CK(229) : AC(77), Memory Disorders : CK(344) : AC(104)

Pharmacological Actions : Neuroprotective Agents : CK(2360) : AC(1099)

Ginger protects against dichlorvos and lindane induced oxidative stress in rat brain.

Article Published Date : Jan 01, 2012

Authors : Poonam Sharma, Rambir Singh

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Brain Damage : CK(93) : AC(44)
Pharmacological Actions: Glutathione Upregulation: CK(152) : AC(53), Neuroprotective Agents: CK(2360) : AC(1099), Superoxide Dismutase Up-regulation: CK(530) : AC(174)

Problem Substances: Dichlorvos : CK(6) : AC(3), Lindane : CK(2) : AC(1)

Brain Inflammation (AC 3) (CK 5)

6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia.

Article Published Date: Dec 31, 2014

Authors: Bhakta Prasad Gaire, Oh Wook Kwon, Sung Hyuk Park, Kwang-Hoon Chun, Sun Yeou Kim, Dong Yun Shin, Ji Woong Choi

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Brain Inflammation : CK(274) : AC(145), Central Nervous System Diseases : CK(6) : AC(6), Cerebral Ischemia : CK(229) : AC(77)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Neuroprotective Agents : CK(2360) : AC(1099), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Additional Keywords: Paradols : CK(1) : AC(1)

A combination of ginger and peony root may prevent memory impairment in AD by inhibiting Aβ accumulation and inflammation in the brain.

Article Published Date: Nov 29, 2015

Authors: Soonmin Lim, Jin Gyu Choi, Minho Moon, Hyo Geun Kim, Wonil Lee, Hyoung-Rok Bak, Hachang Sung, Chi Hye Park, Sun Yeou Kim, Myung Sook Oh

Study Type: Transgenic Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Peony : CK(50) : AC(14)

Diseases: Alzheimer's Disease : CK(1292) : AC(382), Brain Inflammation : CK(274) : AC(145)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Cyclooxygenase 2 Inhibitors : CK(464) : AC(272)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Ginger inhibits microglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009

Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Brain: Microglial Activation : CK(82) : AC(53), Brain Inflammation : CK(274) : AC(145), Inflammation : CK(3240) : AC(882), Lipopolysaccharide-Induced Toxicity : CK(380) : AC(218), Neurodegenerative Diseases : CK(3376) : AC(850)

6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and programmed cell death in human breast cancer cells.

Article Published Date: Feb 19, 2010

Authors: Ya-Ling Hsu, Chung-Yi Chen, Ming-Feng Hou, Eing-Mei Tsai, Yuh-Jyh Jong, Chih-Hsing Hung, Po-Lin Kuo

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Breast Cancer : CK(3592) : AC(1064)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075)

Ginger has significant anti-breast cancer properties.

Article Published Date: Dec 31, 2011

Authors: Ayman I Elkady, Osama A Abuzinadah, Nabih A Baeshen, Tarek R Rahmy

Study Type: Insect Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Breast Cancer : CK(3592) : AC(1064)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bax/Bcl2 Ratio: Decrease : CK(15) : AC(9), Bcl-2 protein down-regulation : CK(198) : AC(131)

Gingerol, a compound found within ginger, inhibits metastasis of human breast cancer cells.

Article Published Date: May 01, 2008

Authors: Hyun Sook Lee, Eun Young Seo, Nam E Kang, Woo Kyung Kim

Study Type: In Vitro Study

Substances: Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)

Diseases: Breast Cancer : CK(3592) : AC(1064), Cancer Metastasis : CK(442) : AC(206)

Pharmacological Actions: Anti-metastatic : CK(634) : AC(414), Antiproliferative : CK(2546) : AC(1685), Matrix metalloproteinase-2 (MMP-2) inhibitor : CK(287) : AC(147)
Kampo preparation Daikenchuto could be useful for cancer therapy.

Article Published Date: Apr 07, 2016

Authors: Takuya Nagata, Kazufumi Toume, Lv Xiao Long, Katsuhisa Hirano, Toru Watanabe, Shinichi Sekine, Tomoyuki Okumura, Katsuko Komatsu, Kazuhiro Tsukada

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Ginseng : CK(473) : AC(133)

Diseases: Breast Cancer : CK(3592) : AC(1064), Colon Cancer : CK(749) : AC(430), Esophageal Cancer : CK(506) : AC(85), Gastric Cancer : CK(622) : AC(198)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075)

Breast Milk: Inadequate/Poor Quality (AC 1) (CK 10)

Ginger is a promising natural galactagogue to improve breast milk volume in the immediate postpartum period without any notable side effect.

Article Published Date: Aug 08, 2016

Authors: Panwara Paritakul, Kasem Ruangrongmorakot, Wipada Laosooksathit, Maysita Suksamarnwong, Pawin Puapornpong

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Breast Milk: Inadequate/Poor Quality : CK(110) : AC(10)

Pharmacological Actions: Galactogogue : CK(73) : AC(8)

Bromobenzene Toxicity (AC 1) (CK 2)
Ginger protects against bromobenzene-induced liver toxicity in male rats.

Article Published Date: Jul 01, 2009

Authors: A S El-Sharaky, A A Newairy, M A Kamel, S M Eweda

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Bromobenzene Toxicity : CK(4) : AC(2)

Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594)

C-Reactive Protein (CRP) (AC 1) (CK 10)

Ginger powder supplementation can reduce inflammatory markers in patients with knee osteoarthritis.

Article Published Date: Jun 30, 2016

Authors: Zahra Naderi, Hassan Mozaffari-Khosravi, Ali Dehghan, Azadeh Nadjarzadeh, Hassan Fallah Huseini

Study Type: Human Study

Substances: Ginger : CK(696) : AC(184)

Diseases: C-Reactive Protein : CK(1852) : AC(174), Osteoarthritis: Knee : CK(517) : AC(53)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Nitric Oxide Inhibitor : CK(223) : AC(108)
3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Pubmed Data: J Complement Integr Med. 2015 Feb 10. Epub 2015 Feb 10. PMID: 25719344

Article Published Date: Feb 09, 2015

Authors: Farzad Shidfar, Asadollah Rajab, Tayebeh Rahideh, Nafiseh Khandouzi, Sharieh Hosseini, Shahrzad Shidfar

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: C-Reactive Protein (CRP) : CK(20) : AC(2), Diabetes: Glycation/A1C : CK(210) : AC(33), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86), Hyperglycemia : CK(539) : AC(130), Insulin Resistance : CK(1683) : AC(346)

Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342), Insulin Sensitizers : CK(350) : AC(70)

Cadmium Poisoning (AC 1) (CK 2)

A spice mixture containing garlic, ginger and nutmeg possesses both therapeutic and prophylactic effect against Cd-induced organ damage.

Article Published Date: May 31, 2016

Authors: Emmanuel Ike Ugwuja, Omotayo O Erejuwa, Nicholas C Ugwu

Study Type: Animal Study

Additional Links

Substances: Garlic : CK(722) : AC(226), Ginger : CK(696) : AC(184), Nutmeg : CK(28) : AC(18)

Diseases: Cadmium Poisoning : CK(131) : AC(62)

Pharmacological Actions: Renoprotective : CK(572) : AC(254)

Cancer Metastasis (AC 2) (CK 2)
Gingerol, a compound found within ginger, inhibits metastasis of human breast cancer cells.

Article Published Date: May 01, 2008

Authors: Hyun Sook Lee, Eun Young Seo, Nam E Kang, Woo Kyung Kim

Study Type: In Vitro Study

Additional Links

Substances: Catechols: CK(14): AC(11), Ginger: CK(696): AC(184)

In vivo and in vitro studies have established that phenolic components of ginger induce apoptosis and autophagy and inhibit metastasis.

Article Published Date: Jun 07, 2016

Authors: Indu Pal Kaur, Parneet Kaur Deol, Kanthi Kiran, Mahendra Bishnoi

Study Type: Review

Additional Links

Diseases: Cancer Metastasis: CK(442): AC(206), Cancers: All: CK(14773): AC(4596)

Cancers (AC 1) (CK 5)

6-gingerol a component of ginger is extensively metabolized in H-1299 human lung cancer cells.

Article Published Date: Nov 13, 2012

Authors: Lishuang Lv, Huadong Chen, Dominique Soroka, Xiaoxin Chen, TinChung Leung,
A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date : Mar 31, 2013

Authors : Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type : Review

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cancers: All : CK(14773) : AC(4596), Inflammation : CK(3240) : AC(882), Liver Disease: Oxidative Stress : CK(9) : AC(5), Muscle Soreness : CK(25) : AC(5)

Therapeutic Actions : Exercise : CK(1278) : AC(196)

Ginger contains the compound zerumbone, which may have chemopreventive activity through activating phase II drug metabolizing enzymes.

Article Published Date : Aug 13, 2004

Authors : Yoshimasa Nakamura, Chiho Yoshida, Akira Murakami, Hajime Ohigashi, Toshihiko Osawa, Koji Uchida

Study Type : In Vitro Study
Ginger has therapeutic properties relevant to cancer treatment.

Pubmed Data: J BUON. 2011 Jul-Sep;16(3):414-24. PMID: 22006742
Article Published Date: Jul 01, 2011
Authors: M M Pereira, R Haniadka, P P Chacko, P L Palatty, M S Baliga
Study Type: Review

In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.

Article Published Date: Dec 31, 2014
Authors: Sahdeo Prasad, Amit K Tyagi
Study Type: Review

In vivo and in vitro studies have established that phenolic components of ginger induce apoptosis and autophagy and inhibit metastasis.

Article Published Date: Jun 07, 2016
The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming.

Cancers: Drug Resistant (AC 1) (CK 1)

Ginger has therapeutic properties relevant to cancer treatment.
Carcinoma: Non-Small-Cell Lung (AC 1) (CK 5)

6-gingerol a component of ginger is extensively metabolized in H-1299 human lung cancer cells.

Article Published Date : Nov 13, 2012

Authors : Lishuang Lv, Huadong Chen, Dominique Soroka, Xiaoxin Chen, TinChung Leung, Shengmin Sang

Study Type : Animal Study, Human In Vitro

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cancers : CK(7) : AC(3), Carcinoma: Non-Small-Cell Lung : CK(134) : AC(71), Colon Cancer : CK(749) : AC(430)

Pharmacological Actions : Antiproliferative : CK(2546) : AC(1685)

Additional Keywords : Biotransformation : CK(5) : AC(1), Plant Extracts : CK(7645) : AC(2539)

Cardiovascular Disease: Prevention (AC 1) (CK 10)

Daily administration of 1,000 mg ginger reduces serum triglyceride concentration, which is a risk factor for cardiovascular disease in peritoneal dialysis patients.

Article Published Date : Oct 15, 2015

Authors : Hadi Tabibi, Hossein Imani, Shahnaz Atabak, Iraj Najafi, Mehdi Hedayati, Leila Rahmani

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cardiovascular Disease: Prevention : CK(3250) : AC(433), Hemodialysis : CK(463) : AC(49), Triglycerides: Elevated : CK(718) : AC(117)

Pharmacological Actions : Hypolipidemic : CK(1288) : AC(265)

Additional Keywords : Risk Reduction : CK(6417) : AC(686)
Cardiovascular Diseases (AC 1) (CK 1)

This paper focuses on discussing the importance of selected spices in the prevention and treatment of cardiovascular diseases.

Article Published Date: Nov 13, 2016

Authors: Bartosz Kulczyński, Anna Gramza-Michałowska

Study Type: Review

Additional Links

Diseases: Cardiovascular Diseases : CK(7342) : AC(916)

Additional Keywords: Risk Reduction : CK(6417) : AC(686)

Central Nervous System Diseases (AC 1) (CK 1)

6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia.

Article Published Date: Dec 31, 2014

Authors: Bhakta Prasad Gaire, Oh Wook Kwon, Sung Hyuk Park, Kwang-Hoon Chun, Sun Yeou Kim, Dong Yun Shin, Ji Woong Choi

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)
6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia.

Article Published Date : Dec 31, 2014
Authors : Bhakta Prasad Gaire, Oh Wook Kwon, Sung Hyuk Park, Kwang-Hoon Chun, Sun Yeou Kim, Dong Yun Shin, Ji Woong Choi
Study Type : In Vitro Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Brain Inflammation : CK(274) : AC(145), Central Nervous System Diseases : CK(6) : AC(6), Cerebral Ischemia : CK(229) : AC(77)
Pharmacological Actions : Anti-Inflammatory Agents : CK(4861) : AC(1630), Neuroprotective Agents : CK(2360) : AC(1099), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)
Additional Keywords : Paradols : CK(1) : AC(1)

Ginger mitigates damage and improves memory impairment in focal cerebral ischemia.

Article Published Date : Jan 01, 2011
Authors : Jintanaporn Wattanathorn, Jinatta Jittiwat, Terdthai Tongun, Supaporn Muchimapura, Kornkanok Ingkaninan
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Brain Damage : CK(93) : AC(44), Cerebral Ischemia : CK(229) : AC(77), Memory Disorders : CK(344) : AC(104)
Pharmacological Actions : Neuroprotective Agents : CK(2360) : AC(1099)
Ginger extract can be used for the prevention of nausea and vomiting during cesarean section under spinal anesthesia.

Article Published Date: Sep 30, 2016
Authors: Hossein Zeraati, Javad Shahinfar, Shiva Imani Hesari, Mahnaz Masrorniya, Fatemeh Nasimi
Study Type: Human Study

Ginger and zinc mixture protected against malathion induced toxicity to the liver and kidney.

Article Published Date: Feb 28, 2015
Authors: Ahmed A Baiomy, Hossam F Attia, Mohamed M Soliman, Omar Makrum
Study Type: Animal Study

Additional Links
Substances: Ginger : CK(696) : AC(184), Zinc : CK(941) : AC(139)
Diseases: Chemical Exposure : CK(67) : AC(21), Chemically-Induced Liver Damage : CK(634) : AC(255), Kidney Damage: Chemically-Induced : CK(25) : AC(13)
Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594), Renoprotective : CK(572) : AC(254)
Additional Keywords: Malathion Toxicity : CK(2) : AC(1), Zinc Chloride : CK(2) : AC(1)
Chemically-Induced Liver Damage (AC 2) (CK 4)

Ginger and zinc mixture protected against malathion induced toxicity to the liver and kidney.

Authors : Ahmed A Baiomy, Hossam F Attia, Mohamed M Soliman, Omar Makrum

Study Type : Animal Study

Substances : Ginger : CK(696) : AC(184), Zinc : CK(941) : AC(139)

Diseases : Chemical Exposure : CK(67) : AC(21), Chemically-Induced Liver Damage : CK(634) : AC(255), Kidney Damage : Chemically-Induced : CK(25) : AC(13)

Pharmacological Actions : Hepatoprotective : CK(1387) : AC(594), Renoprotective : CK(572) : AC(254)

Additional Keywords : Malathion Toxicity : CK(2) : AC(1), Zinc Chloride : CK(2) : AC(1)

Ginger extracts can be considered as an effective, economical and safe extract to circumvent phosphamidon induced hepatotoxicity.

Pubmed Data : Indian J Exp Biol. 2015 Sep ;53(9):574-84. PMID: 26548077

Authors : Suprabhat Mukherjee, Niladri Mukherjee, Prasanta Saini, Priya Roy, Santi P Sinha Babu

Study Type : Animal Study

Substances : Ginger : CK(696) : AC(184)

Diseases : Chemically-Induced Liver Damage : CK(634) : AC(255)

Pharmacological Actions : Hepatoprotective : CK(1387) : AC(594)

Chemotherapy-Induced Nausea (AC
A statistically significant change from baseline for health related quality of life was detected after ginger essential oil inhalation.

Article Published Date: May 31, 2015

Authors: Pei Lin Lua, Noor Salihah, Nik Mazlan

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Chemotherapy-Induced Nausea : CK(153) : AC(17), Quality of Life: Poor : CK(448) : AC(46)

Therapeutic Actions: Aromatherapy : CK(652) : AC(65)

Additional Keywords: Essential Oils : CK(181) : AC(69), Significant Treatment Outcome : CK(3038) : AC(366)

Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea.

Article Published Date: Jun 30, 2012

Authors: Julie L Ryan, Charles E Heckler, Joseph A Roscoe, Shaker R Dakhil, Jeffrey Kirshner, Patrick J Flynn, Jane T Hickok, Gary R Morrow

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Chemotherapy-Induced Nausea : CK(153) : AC(17)

Pharmacological Actions: Antineoplastic Agents : CK(1158) : AC(639)

Additional Keywords: Phytotherapy : CK(1216) : AC(221)

Ginger reduces chemotherapy-induced nausea.

Pubmed Data: Integr Cancer Ther. 2012 Feb 7. Epub 2012 Feb 7. PMID: 22313739

Article Published Date: Feb 07, 2012

Authors: Yunes Panahi, Alireza Saadat, Amirhossein Sahebkar, Farshad Hashemian, Mojgan Taghikhani, Ehsan Abolhasani

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)
Nausea severity and the number of vomiting episodes were significantly lower in the Ginger intervention group than in the control group.

Article Published Date: Sep 30, 2015

Authors: Müzeyyen Arslan, Leyla Ozdemir

Study Type: Human Study

Substances: Ginger

Diseases: Chemotherapy-Induced Nausea

Pharmacological Actions: Chemotherapeutic

Protein and ginger may have therapeutic value in the treatment of chemotherapy-induced delayed nausea.

Article Published Date: Jun 01, 2008

Authors: Max E Levine, Marcum G Gillis, Sara Yanchis Koch, Anne C Voss, Robert M Stern, Kenneth L Koch

Study Type: Human Study

Substances: Ginger, Protein Supplement

Diseases: Chemotherapy-Induced Nausea, Nausea

Pharmacological Actions: Antiemetics

This review indicates that ginger possesses multiple properties that could be beneficial in reducing chemotherapy induced nausea and vomiting

Article Published Date: Apr 06, 2015

Authors: Wolfgang Marx, Karin Ried, Alexandra L McCarthy, Luis Vitetta, Avni Sali, Daniel McKavanagh, Elisabeth Isenring

Study Type: Review

Substances: Ginger

Diseases: Chemotherapy-Induced Nausea

Pharmacological Actions: Anti-Inflammatory Agents, Chemotherapeutic, Gastrointestinal Agents
Chemotherapy-Induced Toxicity (AC 1) (CK 10)

Ginger root powder is effective in reducing severity of acute and delayed chemotherapy-induced nausea and vomiting as additional therapy to ondansetron and dexamethasone in patients receiving chemotherapy.

Article Published Date : Sep 14, 2010
Authors : Anu Kochanujan Pillai, Kamlesh K Sharma, Yogendra K Gupta, Sameer Bakhshi
Study Type : Human Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Chemotherapy-Induced Toxicity : CK(1033) : AC(327), Nausea: Chemotherapy-Induced : CK(70) : AC(6)
Pharmacological Actions : Antiemetics : CK(40) : AC(4)

Chemotherapy-Induced Toxicity: Cisplatin (AC 2) (CK 4)

A compound in ginger known as 6-Gingerol prevents cisplatin-induced acute renal failure in rats.

Article Published Date : Apr 06, 2005
Authors : Anurag Kuhad, Naveen Tirkey, Sangeeta Pilkhuwal, Kanwaljit Chopra
Study Type : Animal Study
Additional Links
Substances : Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)
Zingiber officinale (Ginger) alone and in combination with vitamin E partially ameliorated cisplatin-induced nephrotoxicity.

Author: T A Ajith, V Nivitha, S Usha

Study Type: Animal Study

Additional Keywords: Antineoplastic Agents: CK(69): AC(28), Plant Extracts: CK(7645): AC(2539)

Chemotherapy-Induced Toxicity: Doxorubicin (AC 1) (CK 2)

Ginger protects against doxorubicin-induced acute kidney injury.

Author: T A Ajith, M S Aswathy, U Hema

Study Type: Animal Study

Additional Keywords: Antineoplastic Agents: CK(69): AC(28), Plant Extracts: CK(7645): AC(2539)
Cholesterol: High (AC 1) (CK 10)

Ginger has a significant lipid lowering effect compared to placebo.

Pubmed Data : Saudi Med J. 2008 Sep;29(9):1280-4. PMID: [18813412](https://doi.org/10.1016/S1319-7071(08)60352-8)

Article Published Date : Sep 01, 2008

Authors : Reza Alizadeh-Navaei, Fatemeh Roozbeh, Mehrdad Saravi, Mehdi Pouramir, Farzad Jalali, Ali A Moghadamnia

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cholesterol: High : CK(1226) : AC(195), High Cholesterol : CK(1774) : AC(271), Hypercholesterolemia : CK(1428) : AC(227), Hyperlipidemia : CK(670) : AC(155)

Cholesterol: LDL/HDL ratio (AC 1) (CK 2)

Ginger has a protective effect against dyslipidemia in diabetic rats.

Article Published Date : Feb 28, 2005

Authors : Uma Bhandari, Raman Kanojia, K K Pillai

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cholesterol: LDL/HDL ratio : CK(484) : AC(61), Diabetes: Cardiovascular Illness : CK(700) : AC(107), Hyperlipidemia : CK(670) : AC(155)

Pharmacological Actions : Hypolipidemic : CK(1288) : AC(265)

Additional Keywords : Plant Extracts : CK(7645) : AC(2539)
Cholesterol: Oxidation (AC 1) (CK 1)

Ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

Article Published Date: Mar 31, 2014

Authors: K D Prasanna P Gunathilake, H P Vasantha Rupasinghe

Study Type: In Vitro Study

Additional Links

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184)

Diseases: Cholesterol: Oxidation : CK(518) : AC(117)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Chronic Disease (AC 1) (CK 1)

The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases.

Article Published Date: Dec 31, 2015

Authors: Yasmin Anum Mohd Yusof

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Chronic Disease : CK(84) : AC(10)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Antioxidants : CK(7529) : AC(2682)
Zingiberaceae extracts are clinically effective hypoalgesic agents and the available data show a better safety profile than non steroidal anti inflammatory drugs.

Article Published Date : Dec 31, 2014

Authors : Shaheen E Lakhan, Christopher T Ford, Deborah Tepper

Study Type : Meta Analysis, Review

Additional Links

Substances : Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Diseases : Chronic Pain : CK(206) : AC(33)

Pharmacological Actions : Analgesics : CK(1327) : AC(217)

Additional Keywords : Natural Substances Versus Drugs : CK(1698) : AC(302), Superiority of Natural Substances versus Drugs : CK(1316) : AC(251)

Problem Substances : Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) : CK(1905) : AC(215)

Ginger is a potential cognitive enhancer for middle-aged women.

Article Published Date : Jan 01, 2012

Authors : Naritsara Saenghong, Jintanaporn Wattanathorn, Supaporn Muchimapura, Terdthai Tongun, Nawanant Piyavhatkul, Chuleratana Banchonglikitkul, Tanwarat Kajsongkram

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cognitive Decline/Dysfunction : CK(1163) : AC(215)
Colic (AC 1) (CK 1)

Ginger is useful in gastrointestinal disorders due to its spasmolytic activity.

Article Published Date: Oct 01, 2005

Authors: Muhammad Nabeel Ghayur, Anwarul Hassan Gilani

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Colic : CK(135) : AC(18), Diarrhea : CK(612) : AC(83), Dyspepsia : CK(254) : AC(29)

Pharmacological Actions: Antispasmodic : CK(132) : AC(32)

Colon Cancer (AC 7) (CK 13)

6-gingerol a component of ginger is extensively metabolized in H-1299 human lung cancer cells.

Article Published Date: Nov 13, 2012

Authors: Lishuang Lv, Huadong Chen, Dominique Soroka, Xiaoxin Chen, TinChung Leung, Shengmin Sang

Study Type: Animal Study, Human In Vitro

Additional Links

Substances: Ginger : CK(696) : AC(184)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685)

Additional Keywords: Biotransformation : CK(5) : AC(1), Plant Extracts : CK(7645) : AC(2539)

Ginger contains the compound zerumbone, which inhibits colon and lung carcinogenesis in mice.
Kampo preparation Daikenenchuto could be useful for cancer therapy.

Metabolites of [6]-shogoal can account for the bioactivity of the parent compound, and specifically triggers molecular pathways responsible for cancer cell death in a similar fashion.

The combination of Gelam honey and ginger may serve as
The combination of ginger and gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

This study showed the functions of shogaol as a sensitizing agent to induce cell death of TRAIL-resistant colon cancer cells.

Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Colorectal Cancer (AC 2) (CK 2)

Hexahydrocurcumin has a cytotoxic effect against human colorectal cancer cells.

Article Published Date: Nov 01, 2011

Authors: Chung-Yi Chen, Woei-Ling Yang, Soong-Yu Kuo

Study Type: In Vitro Study

Additional Links

Substances: Curcumin: CK(4803): AC(2175), Ginger: CK(696): AC(184)

Diseases: Colorectal Cancer: CK(1646): AC(619)

Pharmacological Actions: Cell cycle arrest: CK(810): AC(612)

The combination of ginger and gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

Article Published Date: Dec 31, 2014

Authors: Analhuda Abdullah Tahir, Nur Fathiah Abdul Sani, Noor Azian Murad, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: In Vitro Study

Additional Links

Substances: Ginger: CK(696): AC(184), Honey: CK(504): AC(103)

Diseases: Colon Cancer: CK(749): AC(430), Colorectal Cancer: CK(1646): AC(619), Inflammation: CK(3240): AC(882)

Additional Keywords: Gene Expression Regulation: CK(431): AC(214), Natural Substance Synergy: CK(540): AC(249)
Cytomegalovirus Infections (AC 1) (CK 2)

Various extracts of ginger inhibit Cytomegalovirus, HSV-1, and HIV virus.

Article Published Date: Aug 01, 2006
Authors: K Sookkongwaree, M Geitmann, S Roengsumran, A Petsom, U H Danielson
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Cytomegalovirus Infections : CK(99) : AC(37), HIV Infections : CK(680) : AC(219), HSV-1 : CK(53) : AC(44)
Pharmacological Actions: Antiviral Agents : CK(938) : AC(433)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Delayed Gastric Emptying (AC 1) (CK 10)

A standardized extract of ginger and artichoke significantly promoted gastric emptying in healthy volunteers.

Article Published Date: Dec 31, 2015
Authors: S Lazzini, W Polinelli, A Riva, P Morazzoni, E Bombardelli
Study Type: Human Study
Additional Links
Substances: Artichoke : CK(157) : AC(33), Ginger : CK(696) : AC(184)
Diseases: Delayed Gastric Emptying : CK(107) : AC(13)
Pharmacological Actions: Gastrointestinal Agents : CK(268) : AC(41)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats.

Article Published Date: May 31, 2013
Authors: C O Eleazu, M Iroaganachi, P N Okafor, I I Ijeh, K C Eleazu
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Diabetes: Kidney Function : CK(79) : AC(24), Diabetes Mellitus: Type 1 : CK(1130) : AC(301), Diabetic Glomerular Hypertrophy : CK(2) : AC(1)
Pharmacological Actions: Renoprotective : CK(572) : AC(254)

Ginger has anti-diabetic and lipid lowering properties in an animal model of type 1 diabetes.

Article Published Date: Oct 01, 2006
Authors: Zainab M Al-Amin, Martha Thomson, Khaled K Al-Qattan, Riitta Peltonen-Shalaby, Muslim Ali
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Diabetes: Cardiovascular Illness : CK(700) : AC(107), Diabetes Mellitus: Type 1 : CK(1130) : AC(301)
Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger is an aldose reductase inhibitor which may have contribute to the protection against diabetic complications.

Pubmed Data: J Agric Food Chem. 2006 Sep 6;54(18):6640-4. PMID: 16939321
Article Published Date: Sep 06, 2006
Ginger supplementation is an effective treatment for type 2 diabetes.

Article Published Date: Feb 03, 2014

Authors: Tahereh Arablou, Naheed Aryaeian, Majid Valizadeh, Faranak Sharifi, Aghafatemeh Hosseini, Mahmoud Djalali

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 1 : CK(1130) : AC(301), Diabetes Mellitus: Type 2 : CK(3572) : AC(624)

Pharmacological Actions: Aldose reductase inhibitor : CK(15) : AC(4)

Diabetes Mellitus: Type 1: Prevention (AC 2) (CK 12)

Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats.

Article Published Date: Dec 31, 2003

Authors: Sanjay P Akhani, Santosh L Vishwakarma, Ramesh K Goyal

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 1: Prevention : CK(255) : AC(50), Hypertension : CK(2984) : AC(406)
Ginger supplementation is an effective treatment for type 2 diabetes.

Article Published Date: Feb 03, 2014
Authors: Tahereh Arablou, Naheed Aryaeian, Majid Valizadeh, Faranak Sharifi, Aghafatemeh Hosseini, Mahmoud Djalali
Study Type: Human Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Pharmacological Actions: Aldose reductase inhibitor: CK(15): AC(4)

3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Pubmed Data: J Complement Integr Med. 2015 Feb 10. Epub 2015 Feb 10. PMID: 25719344
Article Published Date: Feb 09, 2015
Authors: Farzad Shidfar, Asadollah Rajab, Tayebeh Rahideh, Nafiseh Khandouzi, Sharieh Hosseini, Shahrzad Shidfar
Study Type: Human Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Dietary garlic and especially ginger have anti-diabetic effects.

Article Published Date: Mar 01, 2008

Authors: Md Shahidul Islam, Haymie Choi

Study Type: Animal Study

Substances: Garlic : CK(722) : AC(226), Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624)

Pharmacological Actions: Insulin-releasing : CK(62) : AC(28)

Additional Keywords: Insulinotrophic : CK(2) : AC(1)

Dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.

Article Published Date: Jan 01, 2011

Authors: B O Iranloye, A P Arikawe, G Rotimi, A O Sogbade

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Insulin Resistance : CK(1683) : AC(346), Oxidative Stress : CK(3871) : AC(1382)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Hypoglycemic Agents : CK(1446) : AC(342), Insulin Sensitizers : CK(350) : AC(70), Malonaldehyde (MDA) Down-Regulation : CK(20) : AC(6)

Ginger has a beneficial effect on type 2 diabetics.

Article Published Date: Mar 17, 2013

Authors: Sepide Mahluji, Vahide Ebrahimzade Attari, Majid Mobasseri, Laleh Payahoo, Alireza Ostadrahimi, Samad Ej Golzari

Study Type: Human Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Insulin Resistance : CK(1683) : AC(346)

Pharmacological Actions: Insulin Sensitizers : CK(350) : AC(70)
Ginger is an aldose reductase inhibitor which may have contribute to the protection against diabetic complications.

Pubmed Data: J Agric Food Chem. 2006 Sep 6;54(18):6640-4. PMID: 16939321

Article Published Date: Sep 06, 2006

Authors: Atsushi Kato, Yasuko Higuchi, Hirozo Goto, Haruhisa Kizu, Tadashi Okamoto, Naoki Asano, Jackie Hollinshead, Robert J Nash, Isao Adachi

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 1 : CK(1130) : AC(301), Diabetes Mellitus: Type 2 : CK(3572) : AC(624)

Pharmacological Actions: Aldose reductase inhibitor : CK(15) : AC(4)

Ginger may nave a preventive and therapeutic effect in diabetes and its complications.

Article Published Date: Dec 31, 2011

Authors: Yiming Li, Van H Tran, Colin C Duke, Basil D Roufogalis

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624)

Ginger supplementation is an effective treatment for type 2 diabetes.

Article Published Date: Feb 03, 2014

Authors: Tahereh Arablou, Naheed Aryaeian, Majid Valizadeh, Faranak Sharifi, Aghafatemeh Hosseini, Mahmoud Djalali

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 1 : CK(1130) : AC(301), Diabetes Mellitus: Type 1: Prevention : CK(255) : AC(50), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86)

Pharmacological Actions: Aldose reductase inhibitor : CK(15) : AC(4)
Green tea and ginger extracts have a significant hypoglycemic effect in diabetic rabbits.

Article Published Date : Apr 30, 2015

Authors : Ahmed Elkirdasy, Saad Shousha, Abdulmohsen H Alrohaimi, M Faiz Arshad

Study Type : Animal Study

Additional Links

- **Substances**: Ginger : CK(696) : AC(184), Green Tea : CK(1976) : AC(562)
- **Diseases**: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Hyperlipidemia : CK(670) : AC(155)
- **Pharmacological Actions**: Hypoglycemic Agents : CK(1446) : AC(342), Hypolipidemic : CK(1288) : AC(265)
- **Additional Keywords**: Plant Extracts : CK(7645) : AC(2539)

The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial.

Article Published Date : Jan 31, 2014

Authors : Hassan Mozaffari-Khosravi, Behrouz Talaei, Beman-Ali Jalali, Azadeh Najarzadeh, Mohammad Reza Mozayan

Study Type : Human Study

Additional Links

- **Substances**: Ginger : CK(696) : AC(184)
- **Diseases**: Diabetes: Glycation/A1C : CK(210) : AC(33), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86)
- **Pharmacological Actions**: Hypoglycemic Agents : CK(1446) : AC(342)

The herbal remedies examined had significantly beneficial effects on cholesterol in T2D patients.

Article Published Date : Aug 31, 2014

Authors : Paria Azimi, Reza Ghiasvand, Awat Feizi, Mitra Hariri, Behnoud Abbasi

Study Type : Human Study

Additional Links

- **Substances**: Cardamom : CK(39) : AC(9), Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184), Saffron : CK(255) : AC(63)
- **Diseases**: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), High Cholesterol : CK(1774) : AC(271)
Diabetes Mellitus: Type 2: Prevention (AC 3) (CK 30)

3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Pubmed Data : J Complement Integr Med. 2015 Feb 10. Epub 2015 Feb 10. PMID: 25719344
Article Published Date : Feb 09, 2015
Authors : Farzad Shidfar, Asadollah Rajab, Tayebeh Rahideh, Nafiseh Khandouzi, Sharieh Hosseini, Shahrzad Shidfar
Study Type : Human Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : C-Reactive Protein (CRP) : CK(20) : AC(2), Diabetes: Glycation/A1C : CK(210) : AC(33), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86), Hyperglycemia : CK(539) : AC(130), Insulin Resistance : CK(1683) : AC(346)
Pharmacological Actions : Hypoglycemic Agents : CK(1446) : AC(342), Insulin Sensitizers : CK(350) : AC(70)

Ginger supplementation is an effective treatment for type 2 diabetes.

Article Published Date : Feb 03, 2014
Authors : Tahereh Arablou, Naheed Aryaeian, Majid Valizadeh, Faranak Sharifi, Aghafatemeh Hosseini, Mahmoud Djalali
Study Type : Human Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Diabetes Mellitus: Type 1 : CK(1130) : AC(301), Diabetes Mellitus: Type 1: Prevention : CK(255) : AC(50), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86)
Pharmacological Actions : Aldose reductase inhibitor : CK(15) : AC(4)
The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial.

Article Published Date: Jan 31, 2014
Authors: Hassan Mozaffari-Khosravi, Behrouz Talaei, Beman-Ali Jalali, Azadeh Najarzadeh, Mohammad Reza Mozayan
Study Type: Human Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Diabetes: Glycation/A1C : CK(210) : AC(33), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86)
Pharmacological Actions: Hypoglycemic Agents: CK(1446) : AC(342)

Ginger has a protective effect against dyslipidemia in diabetic rats.

Article Published Date: Feb 28, 2005
Authors: Uma Bhandari, Raman Kanojia, K K Pillai
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Cholesterol: LDL/HDL ratio : CK(484) : AC(61), Diabetes: Cardiovascular Illness : CK(700) : AC(107), Hyperlipidemia: CK(670) : AC(155)
Pharmacological Actions: Hypolipidemic: CK(1288) : AC(265)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger has anti-diabetic and lipid lowering properties in an animal model of type 1 diabetes.
Ginger has a neuroprotective effect in diabetic rats.

3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.
The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial.

Article Published Date: Jan 31, 2014

Authors: Hassan Mozaffari-Khosravi, Behrouz Talaei, Beman-Ali Jalali, Azadeh Najarzadeh, Mohammad Reza Mozayan

Study Type: Human Study

Additional Links

Substances: Ginger: CK(696): AC(184)

Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats.

Ginger has a protective effect against kidney damage associated with diabetes.

Pubmed Data: Chin J Physiol. 2011 Apr 30;54(2):79-86. PMID: 21789888

Diabetic Complications (AC 4) (CK 6)

Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

Combined ginger and cinnamon have significant beneficial effects on the sperm viability, motility, and serum total testosterone, LH, FSH and serum anti-oxidants level.

Article Published Date: Dec 31, 2013

Authors: Arash Khaki, Amir Afshin Khaki, Laleh Hajhosseini, Farhad Sadeghpour Golzar, Nava Ainehchi

Study Type: Animal Study

Additional Links

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Diabetic Complications : CK(1563) : AC(333)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Spermatogenic : CK(12) : AC(2)

These findings showed the potential effects of 6S and 6G on the prevention of protein glycation.

Article Published Date: Aug 05, 2015

Authors: Yingdong Zhu, Yantao Zhao, Pei Wang, Mohamed Ahmedna, Shengmin Sang

Study Type: In Vitro Study

Additional Links

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Advanced Glycation Endproduct (AGE) Formation : CK(7) : AC(3), Diabetic Complications : CK(1563) : AC(333)

Pharmacological Actions: Anti-Glycation Agents : CK(46) : AC(19)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Zingiber officinale attenuates retinal microvascular changes in STZ-induced diabetic rats.

Article Published Date: Dec 31, 2015

Authors: Shirish Dongare, Suresh K Gupta, Rajani Mathur, Rohit Saxena, Sandeep Mathur, Renu Agarwal, Tapas C Nag, Sushma Srivastava, Pankaj Kumar

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
Diseases: Diabetic Complications: CK(1563) : AC(333)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

Diabetic Glomerular Hypertrophy (AC 1) (CK 2)

Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats.

Article Published Date: May 31, 2013
Authors: C O Eleazu, M Iroaganachi, P N Okafor, I I Ijeh, K C Eleazu
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Diabetes: Kidney Function: CK(79) : AC(24), Diabetes Mellitus: Type 1 : CK(1130) : AC(301), Diabetic Glomerular Hypertrophy: CK(2) : AC(1)
Pharmacological Actions: Renoprotective: CK(572) : AC(254)

Diarrhea (AC 1) (CK 1)

Ginger is useful in gastrointestinal disorders due to its spasmyloytic activity.

Article Published Date: Oct 01, 2005
Authors: Muhammad Nabeel Ghayur, Anwarul Hassan Gilani
Study Type: In Vitro Study
Andrographis, Tinospora and especially Zingiber officinale (ginger) have anti-parasitic activity against canine dirofilariasis (heartworm).

Article Published Date: Feb 01, 2010
Authors: L T Merawin, A K Arifah, R A Sani, M N Somchit, A Zuraini, S Ganabadi, Z A Zakaria
Study Type: In Vitro Study

Ginger (intravenous) exhibits antiparasitic activity against Dirofilaria immitis (heartworm).

Pubmed Data: J Helminthol. 1987 Sep;61(3):268-70. PMID: 3668217
Article Published Date: Sep 01, 1987
Authors: A Datta, N C Sukul
Study Type: Animal Study
Collectively these RCTs provide suggestive evidence for the effectiveness of 750-2000 mg ginger powder during the first 3-4 days of menstrual cycle for primary dysmenorrhea.

Ginger is as effective as mefenamic acid and ibuprofen in relieving pain in women with primary dysmenorrhea.

Treatment of primary dysmenorrhea in students with ginger for 5 days had a statistically significant effect on relieving intensity and duration of pain.
Dyspepsia (AC 3) (CK 21)

Ginger and artichoke leaf extracts appears efficacious in the treatment of functional dyspepsia and could represent a promising and safe treatment strategy for this frequent disease.

Article Published Date: Dec 31, 2014

Authors: Attilio Giacosa, Davide Guido, Mario Grassi, Antonella Riva, Paolo Morazzoni, Ezio Bombardelli, Simone Perna, Milena A Faliva, Mariangela Rondanelli

Study Type: Human Study

Additional Links
Substances: Artichoke: CK(157) : AC(33), Ginger: CK(696) : AC(184)
Diseases: Dyspepsia: CK(254) : AC(29)
Pharmacological Actions: Gastrointestinal Agents: CK(268) : AC(41)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539), Significant Treatment Outcome: CK(3038) : AC(366)

Ginger is useful in gastrointestinal disorders due to its spasmolytic activity.

Article Published Date: Oct 01, 2005

Authors: Muhammad Nabeel Ghayur, Anwarul Hassan Gilani

Study Type: In Vitro Study

Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Colic: CK(135) : AC(18), Diarrhea: CK(612) : AC(83), Dyspepsia: CK(254) : AC(29)
Pharmacological Actions: Antispasmodic: CK(132) : AC(32)
Ginger stimulates gastric emptying in patients with functional dyspepsia.

Pubmed Data: World J Gastroenterol. 2011 Jan 7;17(1):105-10. PMID: [21218090](https://pubmed.ncbi.nlm.nih.gov/21218090/)

Article Published Date: Jan 07, 2011

Authors: Ming-Luen Hu, Christophan K Rayner, Keng-Liang Wu, Seng-Kee Chuah, Wei-Chen Tai, Yeh-Pin Chou, Yi-Chun Chiu, King-Wah Chiu, Tsung-Hui Hu

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Dyspepsia : CK(254) : AC(29)

Encephalomyelitis (AC 1) (CK 2)

ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

Article Published Date: Nov 14, 2014

Authors: A Jafarzadeh, M Mohammadi-Kordkhayli, R Ahangar-Parvin, V Azizi, H Khoramdel-Azad, A Shamsizadeh, A Ayoobi, M Nemati, Z M Hassan, S M Moazeni, M Khaksari

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Encephalomyelitis : CK(24) : AC(15), Multiple Sclerosis : CK(964) : AC(184)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539), Significant Treatment Outcome : CK(3038) : AC(366)

Endocrine Imbalances (AC 1) (CK 2)

6-Gingerol-rich fraction from Zingiber officinale
ameliorates carbendazim-induced endocrine disruption.

Enterococcus Infections (AC 1) (CK 1)

These spices could be as potential antimicrobial agents for inclusion in the anti-enterococcal treatment regimen.

Epstein-Barr Virus Infections (AC 1) (CK 1)

Zingiberaceae species (e.g. ginger) contain compounds
that inhibit Epstein-Barr virus activation.

Article Published Date : Apr 01, 1999

Authors : S Vimala, A W Norhanom, M Yadav

Study Type : In Vitro Study

Substances : Ginger : CK(696) : AC(184)

Diseases : Epstein-Barr Virus Infections : CK(132) : AC(47)

Pharmacological Actions : Antiviral Agents : CK(938) : AC(433)

Escherichia coli Infections (AC 1) (CK 1)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date : Dec 31, 2014

Authors : Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type : In Vitro Study

Pharmacological Actions : Anti-Bacterial Agents : CK(1367) : AC(475), Antimicrobial : CK(293) : AC(128), Antioxidants : CK(7529) : AC(2682)

Additional Keywords : Essential Oils : CK(181) : AC(69), Natural Substance Synergy : CK(540) : AC(249)
Esophageal Cancer (AC 1) (CK 2)

Kampo preparation Daikenchuto could be useful for cancer therapy.

Article Published Date: Apr 07, 2016

Authors: Takuya Nagata, Kazufumi Toume, Lv Xiao Long, Katsuhisa Hirano, Toru Watanabe, Shinichi Sekine, Tomoyuki Okumura, Katsuko Komatsu, Kazuhiro Tsukada

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184), Ginseng : CK(473) : AC(133)

Diseases: Breast Cancer : CK(3592) : AC(1064), Colon Cancer : CK(749) : AC(430), Esophageal Cancer : CK(506) : AC(85), Gastric Cancer : CK(622) : AC(198)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075)

Excitotoxicity (AC 1) (CK 2)

Ginger root extract has a neuroprotective effect against monosodium glutamate-induced toxicity in male rats.

Pubmed Data: Pak J Biol Sci. 2009 Feb 1;12(3):201-12. PMID: [19579948]

Article Published Date: Feb 01, 2009

Authors: Abeer M Waggas

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Excitotoxicity : CK(58) : AC(35)

Pharmacological Actions: Neuroprotective Agents : CK(2360) : AC(1099)
Fat Malabsorption (AC 1) (CK 2)

Dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase.

Article Published Date: Sep 13, 2011

Authors: Usha Ns Prakash, Krishnapura Srinivasan

Study Type: Animal Study

Additional Links

Substances: Capsaicin : CK(129) : AC(55), Ginger : CK(696) : AC(184), Piperine : CK(114) : AC(60)

Diseases: Fat Malabsorption : CK(2) : AC(1), Indigestion: Fats : CK(2) : AC(1), Steatorrhea : CK(12) : AC(2)

Pharmacological Actions: Enzyme Inhibitors: Pancreatic Lipase : CK(12) : AC(2)

Fatty Liver (AC 1) (CK 1)

Ginger has potential efficacy for nonalcoholic fatty liver disease.

Article Published Date: Sep 01, 2009

Authors: Amirhossein Sahebkar

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Fatty Liver : CK(887) : AC(204)
Foodborne Pathogens: Prevention/Food Preservation (AC 1) (CK 1)

This study confirmed the potential of selected extracts of spices as effective natural food preservative in juices.

Article Published Date: Dec 31, 2015

Authors: Romika Dhiman, Neeraj Aggarwal, Kamal Rai Aneja, Manpreet Kaur

Study Type: In Vitro Study

Additional Links

Substances: Ashwagandha : CK(154) : AC(74), Ginger : CK(696) : AC(184), Gotu Kola : CK(50) : AC(20), Indian Gooseberry : CK(1) : AC(1), Mint : CK(380) : AC(60), Terminalia : CK(25) : AC(16), Turmeric : CK(5032) : AC(2348)

Diseases: Foodborne Pathogens: Prevention/Food Preservation : CK(19) : AC(18)

Pharmacological Actions: Antimicrobial : CK(293) : AC(128), Food Preservatives : CK(1) : AC(1)

Additional Keywords: Fruit Juice : CK(85) : AC(11), Plant Extracts : CK(7645) : AC(2539)

Fructose-Induced Toxicity (AC 2) (CK 4)

Ginger has a beneficial effect on fructose induced hyperlipidemia and hyperinsulinemia in rats.

Article Published Date: Dec 01, 2005

Authors: Sanjay V Kadmur, Ramesh K Goyal

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Fructose-Induced Toxicity : CK(157) : AC(61), Hyperinsulinism : CK(251) : AC(56), Hyperlipidemia : CK(670) : AC(155), Metabolic Syndrome X : CK(916) : AC(158)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Treatment with ginger ameliorates fructose-induced fatty liver and hypertriglyceridemia in rats.

Article Published Date: Dec 31, 2011

Authors: Huanqing Gao, Tao Guan, Chunli Li, Guowei Zuo, Johji Yamahara, Jianwei Wang, Yu Hao Li

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Fructose-Induced Toxicity : CK(157) : AC(61), Liver Stress: Fructose-Induced : CK(25) : AC(13)

Problem Substances: Fructose : CK(361) : AC(106)

Gastric Cancer (AC 2) (CK 3)

Kampo preparation Daikenchuto could be useful for cancer therapy.

Pubmed Data: J Nat Med. 2016 Apr 8. Epub 2016 Apr 8. PMID: [27059786](https://doi.org/10.1111/jnma.12208)

Article Published Date: Apr 07, 2016

Authors: Takuya Nagata, Kazufumi Toume, Lv Xiao Long, Katsuhisa Hirano, Toru Watanabe, Shinichi Sekine, Tomoyuki Okumura, Katsuko Komatsu, Kazuhiro Tsukada

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Ginseng : CK(473) : AC(133)

Diseases: Breast Cancer : CK(3592) : AC(1064), Colon Cancer : CK(749) : AC(430), Esophageal Cancer : CK(506) : AC(85), Gastric Cancer : CK(622) : AC(198)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075)

These results indicated that the effective components of Pinelliae extract for Purging Stomach-Fire in gastric cancer treatment were pinelliae and dried ginger.

Article Published Date: Dec 31, 2015

Authors: Xi-Ping Liu, Hai-Xia Ming, Pei-Qing Li
Gastric Ulcer (AC 3) (CK 3)

Ginger contains phytochemicals that significantly inhibit gastric lesions.

Article Published Date: Jul 01, 1988

Authors: J Yamahara, M Mochizuki, H Q Rong, H Matsuda, H Fujimura

Ginger is superior to lansoprazole at blocking ulcer formation.

Pubmed Data: Mol Nutr Food Res. 2007 Mar;51(3):324-32. PMID: 17295419

Article Published Date: Mar 01, 2007

Authors: Mugur N Siddaraju, Shylaja M Dharmesh

Turmeric and ginger essential oils could reduce the gastric ulcers in rat stomachs.

Article Published Date: Dec 31, 2014

Authors: Vijayasteltar B Liju, Kottarapat Jeena, Ramadasan Kuttan

Study Type: Animal Study
Ginger has a gastroprotective effect through its acid blocking and anti-Helicobacter pylori activity.

Pubmed Data: Evid Based Complement Alternat Med. 2009 Jul 1. PMID: 19570992
Article Published Date: Jul 01, 2009
Authors: Siddaraju M Nanjundaiah, Harish Nayaka Mysore Annaiah, Shylaja M Dharmesh
Study Type: Animal Study
Substances: Ginger: CK(696): AC(184)
Additional Keywords: Natural Substances Versus Drugs: CK(1698): AC(302), Prevacid (Lansoprazole) Alternatives: CK(6): AC(3)

Ginger is superior to lansoprazole at blocking ulcer formation.

Pubmed Data: Mol Nutr Food Res. 2007 Mar;51(3):324-32. PMID: 17295419
Article Published Date: Mar 01, 2007
Authors: Mugur N Siddaraju, Shylaja M Dharmesh
Study Type: In Vitro Study
Substances: Ginger: CK(696): AC(184)
Diseases: Gastric Ulcer: CK(289): AC(117), Gastroesophageal Reflux: CK(299): AC(44)
Additional Keywords: Superiority of Natural Substances versus Drugs: CK(1316): AC(251)
In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.

Article Published Date: Dec 31, 2014
Authors: Sahdeo Prasad, Amit K Tyagi
Study Type: Review
Additional Links
Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
Diseases: Cancers: All : CK(14773) : AC(4596), Gastrointestinal Cancer : CK(47) : AC(14)
Additional Keywords: Significant Treatment Outcome : CK(3038) : AC(366)

Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit.

Article Published Date: Feb 09, 2010
Authors: Zahra Vahdat Shariatpanahi, Fourogh Azam Taleban, Majid Mokhtari, Shaahin Shahbazi
Study Type: Human Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Gastroparesis : CK(107) : AC(13), Pneumonia : CK(409) : AC(55), Respiratory Distress Syndrome : CK(11) : AC(2)
Ginger and Turmeric extracts may represent effective and natural therapeutic alternatives in the treatment of giardiosis.

Article Published Date: Mar 15, 2016

Authors: Ahmad K Dyab, Doaa A Yones, Zedan Z Ibraheim, Tasneem M Hassan

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Diseases: Giardiasis : CK(29) : AC(8)

Pharmacological Actions: Antiprotozoal Agents : CK(47) : AC(19), Gastrointestinal Agents : CK(268) : AC(41)

Additional Keywords: Dose Response : CK(1056) : AC(408)

Ginger and cinnamon extracts had potential therapeutic effects on *G. lamblia* infection in albino rats as a promising alternative therapy to the commonly used antiigiardial drugs.

Article Published Date: Sep 30, 2014

Authors: Abeer Mahmoud, Rasha Attia, Safaa Said, Zedan Ibraheim

Study Type: Animal Study

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Giardiasis : CK(29) : AC(8)

Pharmacological Actions: Antigiardial agents : CK(4) : AC(2), Antioxidants : CK(7529) : AC(2682), Antiprotozoal Agents : CK(47) : AC(19)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539), Significant Treatment Outcome : CK(24) : AC(4)

Glioblastoma (AC 1) (CK 1)
Gingerol is a sensitizing agent which induces cell death of TRAIL resistant glioblastoma cells.

Article Published Date: Sep 14, 2014

Authors: Dae-Hee Lee, Dong-Wook Kim, Chang-Hwa Jung, Yong J Lee, Daeho Park

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Glioblastoma : CK(200) : AC(88)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bcl-2 protein down-regulation : CK(198) : AC(131), TRAIL sensitizer : CK(3) : AC(2)

Additional Keywords: Apoptosis Regulatory Proteins : CK(1) : AC(1)

Gout (AC 1) (CK 2)

6-Shogaol, a compound found within ginger, exerts a strong anti-inflammatory activity against urate crystal-induced inflammation in mice.

Article Published Date: Sep 01, 2010

Authors: Evan Prince Sabina, Mahaboobkhan Rasool, Lazar Mathew, Panneerselvam Ezilrani, Haridas Indu

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Gout : CK(131) : AC(29), Hyperuricemia : CK(227) : AC(49)

HIV Infections (AC 1) (CK 2)
Various extracts of ginger inhibit Cytomegalovirus, HSV-1, and HIV virus.

Article Published Date: Aug 01, 2006
Authors: K Sookkongwaree, M Geitmann, S Roengsumran, A Petsom, U H Danielson
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Pharmacological Actions: Antiviral Agents: CK(938): AC(433)
Additional Keywords: Plant Extracts: CK(7645): AC(2539)
respiratory tract pathogens.

Article Published Date: Nov 01, 2002
Authors: J F T K Akoachere, R N Ndip, E B Chenwi, L M Ndip, T E Njock, D N Anong
Study Type: In Vitro Study

Pharmacological Actions: Anti-Bacterial Agents: CK(1367): AC(475)
Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Helicobacter Pylori Infection (AC 1) (CK 2)

Ginger has a gastroprotective effect through its acid blocking and anti-Helicobacter pylori activity.

Pubmed Data: Evid Based Complement Alternat Med. 2009 Jul 1. PMID: 19570992
Article Published Date: Jul 01, 2009
Authors: Siddaraju M Nanjundaiah, Harish Nayaka Mysore Annaiah, Shylaja M Dharmesh
Study Type: Animal Study

Substances: Ginger: CK(696): AC(184)
Additional Keywords: Natural Substances Versus Drugs: CK(1698): AC(302), Prevacid (Lansoprazole) Alternatives: CK(6): AC(3)

Hemodialysis (AC 1) (CK 10)
Daily administration of 1,000 mg ginger reduces serum triglyceride concentration, which is a risk factor for cardiovascular disease in peritoneal dialysis patients.

Article Published Date : Oct 15, 2015

Authors : Hadi Tabibi, Hossein Imani, Shahnaz Atabak, Iraj Najafi, Mehdi Hedayati, Leila Rahmani

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cardiovascular Disease: Prevention : CK(3250) : AC(433), Hemodialysis : CK(463) : AC(49), Triglycerides: Elevated : CK(718) : AC(117)

Pharmacological Actions : Hypolipidemic : CK(1288) : AC(265)

Additional Keywords : Risk Reduction : CK(6417) : AC(686)

High Cholesterol (AC 2) (CK 20)

Ginger has a significant lipid lowering effect compared to placebo.

Pubmed Data : Saudi Med J. 2008 Sep;29(9):1280-4. PMID: 18813412

Article Published Date : Sep 01, 2008

Authors : Reza Alizadeh-Navaei, Fatemeh Roozbeh, Mehrdad Saravi, Mehdi Pouramir, Farzad Jalali, Ali A Moghadamnia

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Cholesterol: High : CK(1226) : AC(195), High Cholesterol : CK(1774) : AC(271), Hypercholesterolemia : CK(1428) : AC(227), Hyperlipidemia : CK(670) : AC(155)

The herbal remedies examined had significantly beneficial effects on cholesterol in T2D patients.

Article Published Date : Aug 31, 2014

Authors : Paria Azimi, Reza Ghiavand, Awat Feizi, Mitra Hariri, Behnoud Abbasi
High Fat Diet (AC 1) (CK 2)

These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity.

Article Published Date: May 27, 2015

Authors: Koichi Misawa, Kojiro Hashizume, Masaki Yamamoto, Yoshihiko Minegishi, Tadashi Hase, Akira Shimotoyodome

Study Type: Animal Study

Additional Links

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: High Fat Diet : CK(212) : AC(103), Obesity : CK(3022) : AC(467)

Additional Keywords: Anti-Obesity Agents : CK(487) : AC(108), Plant Extracts : CK(7645) : AC(2539)

Hydatidosis (AC 1) (CK 1)

Ginger has an important anti-hydatid effect in vitro.

Article Published Date: Jul 31, 2016

Authors: Manel Amri, Chafia Touil-Boukoffa

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
Hypercholesterolemia (AC 1) (CK 10)

Ginger has a significant lipid lowering effect compared to placebo.

Pubmed Data: Saudi Med J. 2008 Sep;29(9):1280-4. PMID: 18813412

Article Published Date: Sep 01, 2008

Authors: Reza Alizadeh-Navaei, Fatemeh Roozbeh, Mehrdad Saravi, Mehdi Pouramir, Farzad Jalali, Ali A Moghadamnia

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cholesterol: High : CK(1226) : AC(195), High Cholesterol : CK(1774) : AC(271), Hypercholesterolemia : CK(1428) : AC(227), Hyperlipidemia : CK(670) : AC(155)

Hyperglycemia (AC 1) (CK 10)

3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Pubmed Data: J Complement Integr Med. 2015 Feb 10. Epub 2015 Feb 10. PMID: 25719344

Article Published Date: Feb 09, 2015

Authors: Farzad Shidfar, Asadollah Rajab, Tayebeh Rahideh, Nafiseh Khandouzi, Sharieh Hosseini, Shahrzad Shidfar

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: C-Reactive Protein (CRP) : CK(20) : AC(2), Diabetes: Glycation/A1C : CK(210) : AC(33)
Hyperinsulinism (AC 1) (CK 2)

Ginger has a beneficial effect on fructose induced hyperlipidemia and hyperinsulinemia in rats.

Article Published Date: Dec 01, 2005
Authors: Sanjay V Kadnur, Ramesh K Goyal
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Hyperlipidemia (AC 4) (CK 16)

Ginger has a beneficial effect on fructose induced hyperlipidemia and hyperinsulinemia in rats.

Article Published Date: Dec 01, 2005
Authors: Sanjay V Kadnur, Ramesh K Goyal
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Additional Keywords: Plant Extracts: CK(7645): AC(2539)
Ginger has a protective effect against dyslipidemia in diabetic rats.

Pubmed Data: J Ethnopharmacol. 2005 Feb 28;97(2):227-30. PMID: 15707757

Article Published Date: Feb 28, 2005

Authors: Uma Bhandari, Raman Kanojia, K K Pillai

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Cholesterol: LDL/HDL ratio : CK(484) : AC(61), Diabetes: Cardiovascular Illness : CK(700) : AC(107), Hyperlipidemia : CK(670) : AC(155)

Pharmacological Actions: Hypolipidemic : CK(1288) : AC(265)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger has a significant lipid lowering effect compared to placebo.

Pubmed Data: Saudi Med J. 2008 Sep;29(9):1280-4. PMID: 18813412

Article Published Date: Sep 01, 2008

Authors: Reza Alizadeh-Navaei, Fatemeh Roozbeh, Mehrdad Saravi, Mehdi Pouramir, Farzad Jalali, Ali A Moghadamnia

Study Type: Human Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Cholesterol: High : CK(1226) : AC(195), High Cholesterol : CK(1774) : AC(271), Hypercholesterolemia : CK(1428) : AC(227), Hyperlipidemia : CK(670) : AC(155)

Green tea and ginger extracts have a significant hypoglycemic effect in diabetic rabbits.

Pubmed Data: Acta Pol Pharm. 2015 May-Jun;72(3):497-506. PMID: 26642658

Article Published Date: Apr 30, 2015

Authors: Ahmed Elkirdasy, Saad Shousha, Abdulmohsen H Alrohaimi, M Faiz Arshad

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184), Green Tea : CK(1976) : AC(562)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Hyperlipidemia : CK(670) : AC(155)

Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342), Hypolipidemic : CK(1288) : AC(265)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Hypersensitivity: Respiratory (AC 1) (CK 1)

An extract of Z. cassumunar and its constituent should benefit to ameliorate inflammation and hypersensitiveness of airway epithelium.

Article Published Date: Feb 28, 2015
Authors: Orapan Poachanukoon, Ladda Meesuk, Napaporn Pattanacharoenchai, Paopanga Monthanapisut, Thaweephol Dechatiwongse Na Ayudhya, Sittichai Koontongkaew
Study Type: In Vitro Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Enzyme Inhibitors : CK(473) : AC(251), Matrix metalloproteinase-9 (MMP-9) inhibitor : CK(212) : AC(128)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Hypertension (AC 4) (CK 8)

Pubmed Data: J Pharm Pharmacol. 2004 Jan ;56(1):101-5. PMID: 14980006
Article Published Date: Dec 31, 2003
Authors: Sanjay P Akhani, Santosh L Vishwakarma, Ramesh K Goyal
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Diabetes Mellitus: Type 1: Prevention : CK(255) : AC(50), Hypertension : CK(2984) : AC(406)
Ginger and turmeric rhizomes decreased the anti-inflammatory cytokines in hypertensive rats.

Article Published Date: Mar 21, 2016

Authors: Ayodele Jacob Akinyemi, Gustavo Roberto Thomé, Vera Maria Morsch, Nathieli Bottari, Jucimara Baldissarelli, Lizielle Souza de Oliveira, Jeferson Ferraz Goularte, Adriane Belló-Klein, Thiago Duarte, Marta Duarte, Aline Augusti Boligon, Margareth Linde Athayde, Akintunde Afolabi Akindahunsi, Ganiyu Oboh, Maria Rosa Chitolina Schetinger

Study Type: Animal Study

Additional Links

- **Substances**: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)
- **Diseases**: Hypertension : CK(2984) : AC(406), Inflammation : CK(3240) : AC(882)
- **Pharmacological Actions**: Anti-Inflammatory Agents : CK(4861) : AC(1630), Interleukin-10 downregulation : CK(128) : AC(45), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Ginger lowers blood pressure through blockade of voltage-dependent calcium channels.

Pubmed Data: J Cardiovasc Pharmacol. 2005 Jan;45(1):74-80. PMID: 15613983

Article Published Date: Jan 01, 2005

Authors: Muhammad Nabeel Ghayur, Anwarul Hassan Gilani

Study Type: Animal Study

Additional Links

- **Substances**: Ginger : CK(696) : AC(184)
- **Diseases**: Hypertension : CK(2984) : AC(406)
- **Pharmacological Actions**: Antihypertensive Agents : CK(1178) : AC(164), Calcium Channel Blockers : CK(87) : AC(23)

Supplementation with turmeric or ginger modulated the hydrolysis of ATP, ADP and AMP.

Article Published Date: May 05, 2016

Authors: Ayodele Jacob Akinyemi, Gustavo Roberto Thomé, Vera Maria Morsch, Nathieli Bottari, Jucimara Baldissarelli, Lizielle Souza de Oliveira, Jeferson Ferraz Goularte, Adriane Belló-Klein, Ganiyu Oboh, Maria Rosa Chitolina Schetinger

Study Type: Animal Study

Additional Links
Hyperuricemia (AC 1) (CK 2)

6-Shogaol, a compound found within ginger, exerts a strong anti-inflammatory activity against urate crystal-induced inflammation in mice.

Article Published Date: Sep 01, 2010
Authors: Evan Prince Sabina, Mahaboobkhan Rasool, Lazar Mathew, Panneerselvam Ezilrani, Haridas Indu
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Gout : CK(131) : AC(29), Hyperuricemia : CK(227) : AC(49)

Indigestion: Fats (AC 1) (CK 2)

Dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase.

Article Published Date: Sep 13, 2011
Authors: Usha Ns Prakash, Krishnapura Srinivasan
Study Type: Animal Study
Additional Links
Substances: Capsaicin : CK(129) : AC(55), Ginger : CK(696) : AC(184), Piperine : CK(114) : AC(60)
Diseases: Fat Malabsorption : CK(2) : AC(1), Indigestion: Fats : CK(2) : AC(1), Steatorrhea : CK(12) : AC(2)

Pharmacological Actions: Enzyme Inhibitors: Pancreatic Lipase : CK(12) : AC(2)

Infection: Antibiotic Resistant (AC 1) (CK 1)

Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.

Article Published Date: Jul 31, 2012

Authors: Ponmurugan Karuppiah, Shyamkumar Rajaram

Study Type: Bacterial

Additional Links

Substances: Garlic : CK(722) : AC(226), Ginger : CK(696) : AC(184)

Diseases: Bacterial Infections: Resistance/Biofilm Formation : CK(309) : AC(120), Infection: Antibiotic Resistant : CK(411) : AC(149)

Inflammation (AC 8) (CK 19)

6-Gingerol, a compound found within ginger, inhibits inflammation.

Article Published Date: Apr 24, 2009

Authors: Tzung-Yan Lee, Ko-Chen Lee, Shih-Yuan Chen, Hen-Hong Chang

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)
A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type: Review

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596), Inflammation : CK(3240) : AC(882), Liver Disease: Oxidative Stress : CK(9) : AC(5), Muscle Soreness : CK(25) : AC(5)

Ginger and cinnamon intake have positive effects on inflammation and muscle soreness endued by exercise in Iranian female athletes.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Awat Feizi, Mitra Hariri, Leila Darvishi, Azam Barani, Maryam Taghiyar, Afshin Shiranian, Maryam Hajishafiee

Study Type: Human Study

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Inflammation : CK(3240) : AC(882), Muscle Soreness: Exercise-Induced : CK(164) : AC(18)

Pharmacological Actions: Analgesics : CK(1327) : AC(217), Anti-Inflammatory Agents : CK(4861) : AC(1630)

Ginger and turmeric rhizomes decreased the anti-inflammatory cytokines in hypertensive rats.

Article Published Date: Mar 21, 2016
Ginger has broad anti-inflammatory actions.

Ginger inhibits microglial cell activation associated with brain inflammation.

Nutraceuticals derived from such spices as turmeric, red pepper, black pepper, licorice, clove, ginger, garlic, coriander, and cinnamon target inflammatory pathways, thereby preventing neurodegenerative diseases.

The combination of ginger and gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

"6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice."

3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Pubmed Data: J Complement Integr Med. 2015 Feb 10. Epub 2015 Feb 10. PMID: 25719344

Dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.

Ginger has a beneficial effect on insulin resistance associated with fructose consumption.
Ginger has a beneficial effect on type 2 diabetics.

Ginger has a protective effect against kidney damage associated with diabetes.
Kidney Damage: Chemically-Induced (AC 1) (CK 2)

Ginger and zinc mixture protected against malathion induced toxicity to the liver and kidney.

Article Published Date: Feb 28, 2015

Authors: Ahmed A Baiomy, Hossam F Attia, Mohamed M Soliman, Omar Makrum

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Zinc : CK(941) : AC(139)

Diseases: Chemical Exposure : CK(67) : AC(21), Chemically-Induced Liver Damage : CK(634) : AC(255), Kidney Damage: Chemically-Induced : CK(25) : AC(13)

Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594), Renoprotective : CK(572) : AC(254)

Additional Keywords: Malathion Toxicity : CK(2) : AC(1), Zinc Chloride : CK(2) : AC(1)

Kidney Failure (AC 1) (CK 2)

Ginger and arabic gum may have therapeutic value in acute and chronic kidney failure.

Article Published Date: Jan 01, 2012

Authors: Mona Fouad Mahmoud, Abdalla Ahmed Diaai, Fahmy Ahmed

Study Type: Animal Study

Additional Links

Substances: Arabic gum : CK(14) : AC(3), Ginger : CK(696) : AC(184)

Diseases: Kidney Failure : CK(321) : AC(45), Kidney Failure: Acute : CK(61) : AC(13), Kidney Failure: Chronic : CK(148) : AC(21)

Pharmacological Actions: Renoprotective : CK(572) : AC(254)
Ginger and arabic gum may have therapeutic value in acute and chronic kidney failure.

Article Published Date: Jan 01, 2012
Authors: Mona Fouad Mahmoud, Abdalla Ahmed Diaai, Fahmy Ahmed
Study Type: Animal Study
Additional Links
Pharmacological Actions: Renoprotective: CK(572): AC(254)
Ginger inhibits microglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009

Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Brain: Microglial Activation : CK(82) : AC(53), Brain Inflammation : CK(274) : AC(145), Inflammation : CK(3240) : AC(882), Lipopolysaccharide-Induced Toxicity : CK(380) : AC(218), Neurodegenerative Diseases : CK(3376) : AC(850)

Pharmacological Actions: Cyclooxygenase 2 Inhibitors : CK(464) : AC(272), NF-kappaB Inhibitor : CK(1114) : AC(694), Nitric Oxide Inhibitor : CK(223) : AC(108), Prostaglandin Antagonists : CK(27) : AC(13)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014

Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type: In Vitro Study

Additional Links

Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475), Antimicrobial : CK(293) : AC(128), Antioxidants : CK(7529) : AC(2682)

Additional Keywords: Essential Oils : CK(181) : AC(69), Natural Substance Synergy : CK(540)
Liver Cancer (AC 1) (CK 1)

This reviews the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer.

Article Published Date: Dec 31, 2015

Authors: Yue Zhou, Ya Li, Tong Zhou, Jie Zheng, Sha Li, Hua-Bin Li

Study Type: Review

Additional Links:

Diseases: Liver Cancer: CK(1235): AC(462)

Additional Keywords: Natural Substance/Drug Synergy: CK(352): AC(142)

Liver Cancer: Prevention (AC 3) (CK 6)

"Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats."

Article Published Date: Dec 01, 2008

Authors: Shafina Hanim Mohd Habib, Suzana Makpol, Noor Aini Abdul Hamid, Srijit Das, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: Animal Study
"Ginger ingredients inhibit the development of diethylnitrosoamine induced premalignant phenotype in rat chemical hepatocarcinogenesis model."

Article Published Date: Nov 01, 2010

Authors: Mahmoud A Mansour, Saleh A Bekheet, Salim S Al-Rejaie, Othman A Al-Shabanah, Tawfeq A Al-Howiriny, Ammar C Al-Rikabi, Ayman A Abdo

Study Type: Animal Study

Ginger (Zingiber officinale) prevents ethionine induced rat hepatocarcinogenesis.

Article Published Date: Jan 01, 2008

Authors: Yasmin Anum Mohd Yusof, Norliza Ahmad, Srijit Das, Suhaniza Sulaiman, Nor Azian Murad

Study Type: Animal Study
A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596), Inflammation : CK(3240) : AC(882), Liver Disease: Oxidative Stress : CK(9) : AC(5), Muscle Soreness : CK(25) : AC(5)

Therapeutic Actions: Exercise : CK(1278) : AC(196)

Liver Fibrosis (AC 1) (CK 2)

Ginger protects against liver fibrosis.

Pubmed Data: Nutr Metab (Lond). 2011 ;8:40. Epub 2011 Jun 20. PMID: 21689445

Article Published Date: Jan 01, 2011

Authors: Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: ALT: Elevated : CK(70) : AC(11), AST: Elevated : CK(46) : AC(6), Liver Fibrosis : CK(246) : AC(104)

Pharmacological Actions: Glutathione Upregulation : CK(152) : AC(53), Malonaldehyde (MDA) Down-Regulation : CK(20) : AC(6), Renoprotective : CK(572) : AC(254), Superoxide Dismutase Up-regulation : CK(530) : AC(174)
Liver Stress: Fructose-Induced (AC 1) (CK 2)

Treatment with ginger ameliorates fructose-induced fatty liver and hypertriglyceridemia in rats.

Article Published Date: Dec 31, 2011

Authors: Huanqing Gao, Tao Guan, Chunli Li, Guowei Zuo, Johji Yamahara, Jianwei Wang, Yuhao Li

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Fructose-Induced Toxicity : CK(157) : AC(61), Liver Stress: Fructose-Induced : CK(25) : AC(13)

Problem Substances: Fructose : CK(361) : AC(106)

Ginger contains the compound zerumbone, which inhibits colon and lung carcinogenesis in mice.

Article Published Date: Jan 15, 2009

Authors: Mihye Kim, Shingo Miyamoto, Yumiko Yasui, Takeru Oyama, Akira Murakami, Takuji Tanaka

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Colon Cancer : CK(749) : AC(430), Lung Cancer : CK(1043) : AC(393)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), NF-kappaB Inhibitor : CK(1114) : AC(694)

Ginger exhibits anti-lung cancer properties.
Metabolites of [6]-shogoal can account for the bioactivity of the parent compound, and specifically triggers molecular pathways responsible for cancer cell death in a similar fashion.

Lymphoma: Dalton's (AC 1) (CK 1)

Z. officinale paste could be used as natural spice and a potent antitumour agent.
Malabsorption Syndrome (AC 1) (CK 2)

Dietary spices have a beneficial effect on intestinal villi by increasing the absorptive surface of the small intestine, providing for an increased bioavailability of micronutrients.

Article Published Date: Feb 24, 2010

Authors: Usha N S Prakash, Krishnapura Srinivasan

Study Type: Animal Study

Additional Links

Substances: Black Pepper : CK(229) : AC(96), Capsaicin : CK(129) : AC(55), Ginger : CK(696) : AC(184), Piperine : CK(114) : AC(60), Red Pepper : CK(4) : AC(2)

Diseases: Malabsorption Syndrome : CK(54) : AC(15), Microvilli atrophy : CK(4) : AC(1)

Additional Keywords: Nutrient Absorption : CK(4) : AC(2)

Malignant Melanoma (AC 1) (CK 1)

Curcuma rhizome, a main representant of Zingiberaceae family may be a promising natural source for active compounds against malignant melanoma.

Pubmed Data: Biol Res. 2015 Jan 12 ;48(1):1. Epub 2015 Jan 12. PMID: [25654588](https://doi.org/10.4081/br.2015.238)

Article Published Date: Jan 11, 2015

Authors: Corina Danciu, Lavinia Vlaia, Florinela Fetea, Monica Hancianu, Dorina E Coricovac,
Melanoma (AC 1) (CK 1)

A compound found within ginger inhibits melanoma cells.

Article Published Date: Jan 01, 2011

Authors: Huey-Chun Huang, Shao-Hua Chiu, Tsong-Min Chang

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Melanoma : CK(285) : AC(149)

Memory Disorders (AC 1) (CK 2)

Ginger mitigates damage and improves memory impairment in focal cerebral ischemia.

Article Published Date: Jan 01, 2011

Authors: Jintanaporn Wattanathorn, Jinatta Jittiwat, Terdthai Tongun, Supaporn Muchimapura, Kornkanok Ingkaninan

Study Type: Animal Study
Ginger is an effective supplement for heavy menstrual bleeding.

Article Published Date: Oct 07, 2014

Authors: Farzaneh Kashefi, Marjan Khajehei, Mohammad Alavinia, Ebrahim Golmakani, Javad Asili

Study Type: Human Study

Ginger has a beneficial effect on fructose induced hyperlipidemia an dhyperinsulinemia in rats.

Pubmed Data: Indian J Exp Biol. 2005 Dec;43(12):1161-4. PMID: 16359128

Article Published Date: Dec 01, 2005

Authors: Sanjay V Kadnur, Ramesh K Goyal

Study Type: Animal Study

Ginger has a protective effect against the development of metabolic syndrome in high-fat diet-fed rats.

Article Published Date: May 01, 2009

Authors: Srinivas Nammi, Satyanarayana Sreemantula, Basil D Roufogalis

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Metabolic Syndrome X : CK(916) : AC(158)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Micrococcus luteus infections (AC 1) (CK 1)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014

Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type: In Vitro Study

Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475), Antimicrobial : CK(293) : AC(128), Antioxidants : CK(7529) : AC(2682)

Additional Keywords: Essential Oils : CK(181) : AC(69), Natural Substance Synergy : CK(540) : AC(249)
Microvilli atrophy (AC 1) (CK 2)

Dietary spices have a beneficial effect on intestinal villi by increasing the absorptive surface of the small intestine, providing for an increased bioavailability of micronutrients.

Article Published Date: Feb 24, 2010

Authors: Usha N S Prakash, Krishnapura Srinivasan

Study Type: Animal Study

Additional Links

Substances: Black Pepper : CK(229) : AC(96), Capsaicin : CK(129) : AC(55), Ginger : CK(696) : AC(184), Piperine : CK(114) : AC(60), Red Pepper : CK(4) : AC(2)

Diseases: Malabsorption Syndrome : CK(54) : AC(15), Microvilli atrophy : CK(4) : AC(1)

Additional Keywords: Nutrient Absorption : CK(4) : AC(2)

Migraines (AC 1) (CK 10)

Ginger compares favorably to the drug sumatriptan for migraine headaches, but with lower side effects.

Pubmed Data: Phytother Res. 2013 May 9. Epub 2013 May 9. PMID: 23657930#

Article Published Date: May 08, 2013

Authors: Maghbooli Mehdi, Golipour Farhad, Moghimi Esfandabadi Alireza, Yousefi Mehran

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Migraines : CK(20) : AC(2)

Additional Keywords: Natural Substances Versus Drugs : CK(1698) : AC(302), Superiority of Natural Substances versus Drugs : CK(1316) : AC(251)
Morning Sickness (AC 1) (CK 10)

Ginger syrup may be effective as an antiemetic in early pregnancy.

Article Published Date : Sep 01, 2002
Authors : Angela Keating, Ronald A Chez
Study Type : Human Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Morning Sickness : CK(50) : AC(5)

Morphine Tolerance/Dependence (AC 1) (CK 2)

Ginger (Zingiber officinale Roscoe) elicits antinociceptive properties and potentiates morphine-induced analgesia in the rat radiant heat tail-flick test.

Article Published Date : Nov 30, 2010
Authors : Reza Sepahvand, Saeed Esmaeili-Mahani, Ardeshir Arzi, Bahram Rasoulian, Mehdi Abbasnejad
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Morphine Tolerance/Dependence : CK(75) : AC(31), Pain : CK(845) : AC(136)
Pharmacological Actions : Analgesics : CK(1327) : AC(217)
Additional Keywords : Drug Synergy : CK(351) : AC(156), Phytotherapy : CK(1216) : AC(221), Plant Extracts : CK(7645) : AC(2539)
Motion Sickness (AC 1) (CK 10)

Ginger has a therapeutic effect on motion sickness.

Pubmed Data : Nutr Cancer. 2007;58(1):60-5. PMID: [12576305](#)

Article Published Date : Jan 01, 2007

Authors : Han-Chung Lien, Wei Ming Sun, Yen-Hsueh Chen, Hyerang Kim, William Hasler, Chung Owyang

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Motion Sickness : CK(10) : AC(1)

Pharmacological Actions : Vasopressin Inhibitor : CK(12) : AC(2)

Multiple Sclerosis (AC 1) (CK 2)

ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

Article Published Date : Nov 14, 2014

Authors : A Jafarzadeh, M Mohammadi-Kordkhayli, R Ahangar-Parvin, V Azizi, H Khoramdel-Azad, A Shamsizadeh, A Ayoobi, M Nemati, Z M Hassan, S M Moazeni, M Khaksari

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Encephalomyelitis : CK(24) : AC(15), Multiple Sclerosis : CK(964) : AC(184)

Additional Keywords : Plant Extracts : CK(7645) : AC(2539), Significant Treatment Outcome : CK(3038) : AC(366)

Muscle Damage (AC 1) (CK 10)
Ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise

Pubmed Data: Phytother Res. 2015 Jun ;29(6):887-93. Epub 2015 Mar 18. PMID: [25787877](https://doi.org/10.1002/ptr.5171)

Article Published Date: May 31, 2015

Authors: Melissa D Matsumura, Gerald S Zavorsky, James M Smoliga

Study Type: Human Study

Substances: Ginger

Diseases: Muscle Damage, Muscle Soreness

Therapeutic Actions: Exercise

Additional Keywords: Supplementation

Muscle Soreness (AC 3) (CK 21)

A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type: Review

Substances: Ginger

Diseases: Cancers, Inflammation, Liver Disease, Oxidative Stress, Muscle Soreness

Therapeutic Actions: Exercise

Pharmacological Actions: Anti-Inflammatory Agents, Anti-metastatic, Antioxidants, Antiproliferative, Apoptotic, Gastrointestinal Agents

Ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise

Pubmed Data: Phytother Res. 2015 Jun ;29(6):887-93. Epub 2015 Mar 18. PMID: [25787877](https://doi.org/10.1002/ptr.5171)
Two grams of ginger may have anti-inflammation and analgesic effect on delayed onset muscle soreness.

Muscle Soreness: Exercise-Induced (AC 1) (CK 10)

Ginger and cinnamon intake have positive effects on inflammation and muscle soreness endued by exercise in Iranian female athletes.

Nausea: Chemotherapy-Induced (AC 1) (CK 10)

Ginger root powder is effective in reducing severity of acute and delayed chemotherapy-induced nausea and vomiting as additional therapy to ondansetron and dexamethasone in patients receiving chemotherapy.

Article Published Date: Sep 14, 2010

Authors: Anu Kochanujan Pillai, Kamlesh K Sharma, Yogendra K Gupta, Sameer Bakhshi

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Chemotherapy-Induced Toxicity : CK(1033) : AC(327), Nausea: Chemotherapy-Induced : CK(70) : AC(6)

Pharmacological Actions: Antiemetics : CK(40) : AC(4)

Nausea: Pregnancy-Associated (AC 1) (CK 10)

Ginger and Vitamin B6 are both effective in treating nausea and vomiting in pregnancy.

Pubmed Data: Midwifery. 2008 Feb 11. PMID: [18272271](https://doi.org/10.1016/j.midw.2007.09.001)

Article Published Date: Feb 11, 2008
Authors: Jenabi Ensiyeh, Mohammad-Alizadeh C Sakineh
Study Type: Human Study
Additional Links
Substances: Ginger : CK(696) : AC(184), Vitamin B-6 : CK(435) : AC(54)
Diseases: Nausea: Pregnancy-Associated : CK(21) : AC(3)

Ginger reduces the tendency to vomiting and cold sweating due to seasickness significantly better than placebo.

Article Published Date: Jan 01, 1988
Authors: A Grøntved, T Brask, J Kambskard, E Hentzer
Study Type: Human Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Nausea : CK(50) : AC(5), Nausea: Sea-Sickness : CK(10) : AC(1)

Protein and ginger may have therapeutic value in the treatment of chemotherapy-induced delayed nausea.

Article Published Date: Jun 01, 2008
Authors: Max E Levine, Marcum G Gillis, Sara Yanchis Koch, Anne C Voss, Robert M Stern, Kenneth L Koch
Study Type: Human Study
Additional Links
Substances: Ginger : CK(696) : AC(184), Protein Supplement : CK(73) : AC(7)
Diseases: Chemotherapy-Induced Nausea : CK(153) : AC(17), Nausea : CK(50) : AC(5)
Pharmacological Actions: Antiemetics : CK(40) : AC(4)
Nausea: Post-Operative (AC 1) (CK 10)

Aromatherapy is promising as an inexpensive, noninvasive treatment for postoperative nausea that can be administered and controlled by patients as needed.

Article Published Date: Aug 31, 2013

Authors: Ronald Hunt, Jacqueline Dienemann, H James Norton, Wendy Hartley, Amanda Hudgens, Thomas Stern, George Divine

Study Type: Human Study

Additional Links

Substances: Cardamom : CK(39) : AC(9), Ginger : CK(696) : AC(184), Peppermint : CK(333) : AC(53), Spearmint : CK(45) : AC(7)

Diseases: Nausea: Post-Operative : CK(31) : AC(4)

Therapeutic Actions: Aromatherapy : CK(652) : AC(65)

Additional Keywords: Essential Oils : CK(181) : AC(69), Significant Treatment Outcome : CK(3038) : AC(366)

Nausea: Sea-Sickness (AC 1) (CK 10)

Ginger reduces the tendency to vomiting and cold sweating due to seasickness significantly better than placebo.

Article Published Date: Jan 01, 1988

Authors: A Grøntved, T Brask, J Kambskard, E Hentzer

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Nausea : CK(50) : AC(5), Nausea: Sea-Sickness : CK(10) : AC(1)
Ginger inhibits microglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009

Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Brain: Microglial Activation : CK(82) : AC(53), Brain Inflammation : CK(274) : AC(145), Inflammation : CK(3240) : AC(882), Lipopolysaccharide-Induced Toxicity : CK(380) : AC(218), Neurodegenerative Diseases : CK(3376) : AC(850)

Pharmacological Actions: Cyclooxygenase 2 Inhibitors : CK(464) : AC(272), NF-kappaB Inhibitor : CK(1114) : AC(694), Nitric Oxide Inhibitor : CK(223) : AC(108), Prostaglandin Antagonists : CK(27) : AC(13)

Nutraceuticals derived from such spices as turmeric, red pepper, black pepper, licorice, clove, ginger, garlic, coriander, and cinnamon target inflammatory pathways, thereby preventing neurodegenerative diseases.

Article Published Date: Oct 01, 2011

Authors: Ramaswamy Kannappan, Subash Chandra Gupta, Ji Hye Kim, Simone Reuter, Bharat Bhushan Aggarwal

Study Type: Review

Additional Links

Diseases: Inflammation : CK(3240) : AC(882), Neurodegenerative Diseases : CK(3376) : AC(850)

Pharmacological Actions: Neuroprotective Agents : CK(2360) : AC(1099)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Ginger-salt moxibustion is therapeutic for poststroke urinary disorders.

Pubmed Data: Zhongguo Zhen Jiu. 2006 Sep;26(9):621-4. PMID: 17036477

Article Published Date: Sep 01, 2006

Authors: Hui-lin Liu, Lin-peng Wang

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Neurogenic Bladder : CK(91) : AC(10), Stroke: PostStroke Urinary Disorders : CK(10) : AC(1)

Therapeutic Actions: Moxibustion : CK(274) : AC(28)

Ginger has anti-obesogenic properties.

Article Published Date: Sep 01, 2011

Authors: John H Beattie, Fergus Nicol, Margaret-Jane Gordon, Martin D Reid, Louise Cantlay, Graham W Horgan, In-Sook Kwun, Ji-Yun Ahn, Tae-Youl Ha

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Obesity : CK(3022) : AC(467)

These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity.

Article Published Date: May 27, 2015

Authors: Koichi Misawa, Kojiro Hashizume, Masaki Yamamoto, Yoshihiko Minegishi, Tadashi
Osteoarthritis: Knee (AC 3) (CK 30)

Aroma-massage therapy with ginger and orange oil have potential as an alternative method for short-term knee pain relief.

Pubmed Data: Microbes Infect. 2006 May;8(6):1450-4. Epub 2006 Mar 29. PMID: 18534325
Article Published Date: May 01, 2006
Authors: Yin Bing Yip, Ada Chung Ying Tam
Study Type: Human Study
Additional Links
Substances: Ginger: CK(696) : AC(184), Orange: CK(170) : AC(35)
Diseases: Osteoarthritis: Knee: CK(517) : AC(53)
Therapeutic Actions: Aromatherapy: CK(652) : AC(65), Massage/Therapeutic Touch: CK(810) : AC(81)

Ginger has reduces symptoms of osteoarthritis of the knee.

Article Published Date: Nov 01, 2001
Authors: R D Altman, K C Marcussen
Study Type: Human Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Osteoarthritis: Knee: CK(517) : AC(53)

Ginger powder supplementation can reduce inflammatory markers in patients with knee
osteoarthritis.

Article Published Date : Jun 30, 2016

Authors : Zahra Naderi, Hassan Mozaffari-Khosravi, Ali Dehghan, Azadeh Nadjarzadeh, Hassan Fallah Huseini

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : C-Reactive Protein : CK(1852) : AC(174), Osteoarthritis: Knee : CK(517) : AC(53)

Pharmacological Actions : Anti-Inflammatory Agents : CK(4861) : AC(1630), Nitric Oxide Inhibitor : CK(223) : AC(108)

Overweight (AC 1) (CK 10)

Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men.

Article Published Date : Sep 30, 2012

Authors : Muhammad S Mansour, Yu-Ming Ni, Amy L Roberts, Michael Kelleman, Arindam Roychoudhury, Marie-Pierre St-Onge

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Overweight : CK(3320) : AC(544), Weight Probems: Appetite : CK(162) : AC(22)

Pharmacological Actions : Thermogenic : CK(57) : AC(9)

Oxidative Stress (AC 6) (CK 12)

6-gingerol may be useful in the prevention and treatment
A compound in ginger known as 6-Gingerol prevents cisplatin-induced acute renal failure in rats.

Dietary ginger has a protective effect on lindane-induced oxidative stress in rats.
Dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.

Article Published Date: Jan 01, 2011

Authors: B O Iranloye, A P Arikawe, G Rotimi, A O Sogbade

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696): AC(184)

Ginger protects mice against radiation-induced lethality.

Article Published Date: Aug 01, 2004

Authors: Ganesh Jagetia, Manjeshwar Baliga, Ponemone Venkatesh

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696): AC(184)
Diseases: Oxidative Stress: CK(3871): AC(1382), Radiation Induced Illness: CK(1046): AC(264)
Pharmacological Actions: Antioxidants: CK(7529): AC(2682), Radioprotective: CK(756): AC(262)

Additional Keywords: Plant Extracts: CK(7645): AC(2539)

These results are supportive of use of ginger essential oil as a potential radioprotective compound.

Article Published Date: Dec 31, 2015

Authors: Kottarapat Jeena, Vijayasteltar B Liju, Viswanathan Ramanath, Ramadasan Kuttan

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696): AC(184)
Diseases: Oxidative Stress: CK(3871): AC(1382)
Pharmacological Actions: Radioprotective: CK(756): AC(262)

Additional Keywords: Essential Oils: CK(181): AC(69)
Ginger (Zingiber officinale Roscoe) elicits antinociceptive properties and potentiates morphine-induced analgesia in the rat radiant heat tail-flick test.

Article Published Date: Nov 30, 2010
Authors: Reza Sepahvand, Saeed Esmaeili-Mahani, Ardeshir Arzi, Bahram Rasoulian, Mehdi Abbasnejad
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Morphine Tolerance/Dependence: CK(75) : AC(31), Pain: CK(845) : AC(136)
Pharmacological Actions: Analgesics: CK(1327) : AC(217)
Additional Keywords: Drug Synergy: CK(351) : AC(156), Phytotherapy: CK(1216) : AC(221), Plant Extracts: CK(7645) : AC(2539)

Ginger extract inhibited cell proliferation and subsequently induced the autotic death of pancreatic cancer Panc-1 cells.

Article Published Date: Dec 31, 2014
Authors: Miho Akimoto, Mari Iizuka, Rie Kanematsu, Masato Yoshida, Keizo Takenaga
Study Type: Animal Study
Additional Links
Substances: 6-Shogaol: CK(38) : AC(26), Ginger: CK(696) : AC(184), Gingerol: CK(53) : AC(31)
Diseases: Pancreatic Cancer: CK(890) : AC(260)
Pharmacological Actions: Antiproliferative: CK(2546) : AC(1685), Autophagy Up-regulation: CK(108) : AC(65)

Gingerol may help combat chemotherapy resistant
pancreatic cancer cells.

Article Published Date: Oct 31, 2006

Authors: Yon Jung Park, Jing Wen, Seungmin Bang, Seung Woo Park, Si Young Song

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Pancreatic Cancer : CK(890) : AC(260)

Additional Keywords: Chemotherapy Resistance : CK(2) : AC(2)

Zerumbone was able to induce apoptosis of pancreatic carcinoma cell lines

Article Published Date: Jan 01, 2012

Authors: Songyan Zhang, Qiaojing Liu, Yanju Liu, Hong Qiao, Yu Liu

Study Type: Human In Vitro

Additional Links

Substances: Ginger : CK(696) : AC(184), Zerumbone : CK(5) : AC(1)

Diseases: Pancreatic Cancer : CK(890) : AC(260)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Caspase-3 Activation : CK(91) : AC(66), P21 Activation : CK(72) : AC(47), Tumor Suppressor Protein p53 Upregulation : CK(293) : AC(202)

Additional Keywords: Zerumbone : CK(5) : AC(1)

Parabens-Associated Toxicity (AC 4) (CK 6)

A water extract of ginger amelioriates paraben induced cytotoxicity.

Article Published Date: Mar 01, 2006

Authors: Veena Asnani, Ramtej Jayram Verma

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)
Ginger extract ameliorates paraben induced biochemical changes in liver and kidney of mice.

Pubmed Data: Acta Pol Pharm. 2007 May-Jun;64(3):217-20. PMID: 17695143

Article Published Date: May 01, 2007

Authors: Ramtej J Verma, Veena Asnani

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Parabens-Associated Toxicity : CK(16) : AC(5)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger extract has an ameliorative effect on paraben-induced lipid peroxidation in the liver of mice.

Article Published Date: May 01, 2009

Authors: Veena M Asnani, Ramtej J Verma

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Parabens-Associated Toxicity : CK(16) : AC(5)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger significantly reduces paraben induced lipid peroxidation in liver and kidney cells.

Pubmed Data: Acta Pol Pharm. 2007 Jan-Feb;64(1):35-7. PMID: 17665848

Article Published Date: Jan 01, 2007

Authors: Veena Asnani, Ramtej Jayram Verma

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Parabens-Associated Toxicity : CK(16) : AC(5)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Ginger and garlic treatment significantly lowered the number of the blastocystis hominis parasites.

Article Published Date: Mar 31, 2015

Authors: Ekhlas H Abdel-Hafeez, Azza K Ahmad, Noha H Andelgelil, Manal Z M Abdellatif, Amany M Kamal, Rabie M Mohamed

Study Type: In Vitro Study

Additional Links

Substances: Garlic : CK(722) : AC(226), Ginger : CK(696) : AC(184), Onion : CK(235) : AC(57), Turmeric : CK(5032) : AC(2348)

Diseases: Parasitic Intestinal Diseases : CK(17) : AC(7)

Pharmacological Actions: Antiparasitic Agents : CK(68) : AC(40)

Dietary ginger has a protective effect on lindane-induced oxidative stress in rats.

Article Published Date: Mar 01, 2008

Authors: Rafat S Ahmed, Sanvidhan G Suke, Vandana Seth, Ayanabha Chakraborti, Ashok K Tripathi, Basu D Banerjee

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Oxidative Stress : CK(3871) : AC(1382), Pesticide Toxicity : CK(192) : AC(61)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682)

Additional Keywords: Chemical: Lindane : CK(22) : AC(7), Plant Extracts : CK(7645) : AC(2539)
Pets: Heartworm (AC 2) (CK 3)

Andrographis, Tinospora and especially Zingiber officinale (ginger) have anti-parasitic activity against canine dirofilariasis (heartworm).

- **Article Published Date**: Feb 01, 2010
- **Authors**: L T Merawin, A K Arifah, R A Sani, M N Somchit, A Zuraini, S Ganabadi, Z A Zakaria
- **Study Type**: In Vitro Study
- **Additional Links**
 - **Substances**: Ginger : CK(696) : AC(184)
 - **Diseases**: Dog Diseases : CK(3) : AC(2), Pets: Heartworm : CK(3) : AC(2)
 - **Pharmacological Actions**: Antiparasitic Agents : CK(68) : AC(40)
 - **Additional Keywords**: Plant Extracts : CK(7645) : AC(2539)

Ginger (intravenous) exhibits antiparasitic activity against Dirofilaria immitis (heartworm).

- **Pubmed Data**: J Helminthol. 1987 Sep;61(3):268-70. PMID: [3668217](#)
- **Article Published Date**: Sep 01, 1987
- **Authors**: A Datta, N C Sukul
- **Study Type**: Animal Study
- **Additional Links**
 - **Substances**: Ginger : CK(696) : AC(184)
 - **Diseases**: Dog Diseases : CK(3) : AC(2), Pets: Heartworm : CK(3) : AC(2)
 - **Pharmacological Actions**: Antiparasitic Agents : CK(68) : AC(40)
 - **Additional Keywords**: Plant Extracts : CK(7645) : AC(2539)

Pneumonia (AC 1) (CK 10)

Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit.
Premenopausal Disorders (AC 1) (CK 10)

Effect of treatment with ginger on the severity of premenstrual syndrome symptoms.

Article Published Date: Dec 31, 2013

Authors: Samira Khayat, Masoomeh Kheirkhah, Zahra Behboodi Moghadam, Hamed Fanaei, Amir Kasaeian, Mani Javadimehr

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Premenopausal Disorders : CK(60) : AC(3)

Prostate Cancer (AC 4) (CK 6)

Curcumin, Resveratrol and Gingerol decrease prostate inflammation

Article Published Date: Jun 01, 2007

Authors: Larisa Nonn, David Duong, Donna M Peehl
Ginger protects against prostate cancer.

Pubmed Data: Mol Nutr Food Res. 2007 Dec;51(12):1492-502. PMID: [18030663](https://pubmed.ncbi.nlm.nih.gov/18030663/)

Article Published Date: Dec 01, 2007

Authors: Yogeshwer Shukla, Sahdeo Prasad, Chitra Tripathi, Madhulika Singh, Jasmine George, Neetu Kalra

Study Type: Animal Study

Turmeric and ginger work synergistically to suppress prostate cancer cell lines.

Article Published Date: Oct 11, 2012

Authors: Kesava Rao V Kurapati, Thangavel Samikkannu, Dakshayani B Kadiyala, Saiyed M Zainulabedin, Nimisha Gandhi, Sadhana S Sathaye, Manohar A Indap, Nawal Boukli, Jose W Rodriguez, Madhavan P N Nair

Study Type: In Vitro Study

Whole ginger extract reduces prostate tumor size by 56% in mice.

Article Published Date: Aug 18, 2011

Authors: Prasanthi Karna, Sharmeen Chagani, Sushma R Gundala, Padmashree C G Rida, Ghazia Asif, Vibhuti Sharma, Meenakshi V Gupta, Ritu Aneja

Study Type: Transgenic Animal Study

Study Type: In Vitro Study
Diseases: Prostate Cancer : CK(1499) : AC(438)
Substances: Curcumin : CK(4803) : AC(2175), Ginger : CK(696) : AC(184), Resveratrol : CK(1283) : AC(746)
Pharmacological Actions: Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Ginger protects against prostate cancer.

Pubmed Data: Mol Nutr Food Res. 2007 Dec;51(12):1492-502. PMID: [18030663](https://pubmed.ncbi.nlm.nih.gov/18030663/)

Article Published Date: Dec 01, 2007

Authors: Yogeshwer Shukla, Sahdeo Prasad, Chitra Tripathi, Madhulika Singh, Jasmine George, Neetu Kalra

Study Type: Animal Study

Turmeric and ginger work synergistically to suppress prostate cancer cell lines.

Article Published Date: Oct 11, 2012

Authors: Kesava Rao V Kurapati, Thangavel Samikkannu, Dakshayani B Kadiyala, Saiyed M Zainulabedin, Nimisha Gandhi, Sadhana S Sathaye, Manohar A Indap, Nawal Boukli, Jose W Rodriguez, Madhavan P N Nair

Study Type: In Vitro Study

Whole ginger extract reduces prostate tumor size by 56% in mice.

Article Published Date: Aug 18, 2011

Authors: Prasanthi Karna, Sharmeen Chagani, Sushma R Gundala, Padmashree C G Rida, Ghazia Asif, Vibhuti Sharma, Meenakshi V Gupta, Ritu Aneja

Study Type: Transgenic Animal Study

Study Type: In Vitro Study
Diseases: Prostate Cancer : CK(1499) : AC(438)
Substances: Curcumin : CK(4803) : AC(2175), Ginger : CK(696) : AC(184), Resveratrol : CK(1283) : AC(746)
Pharmacological Actions: Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Ginger protects against prostate cancer.

Pubmed Data: Mol Nutr Food Res. 2007 Dec;51(12):1492-502. PMID: [18030663](https://pubmed.ncbi.nlm.nih.gov/18030663/)

Article Published Date: Dec 01, 2007

Authors: Yogeshwer Shukla, Sahdeo Prasad, Chitra Tripathi, Madhulika Singh, Jasmine George, Neetu Kalra

Study Type: Animal Study

Turmeric and ginger work synergistically to suppress prostate cancer cell lines.

Article Published Date: Oct 11, 2012

Authors: Kesava Rao V Kurapati, Thangavel Samikkannu, Dakshayani B Kadiyala, Saiyed M Zainulabedin, Nimisha Gandhi, Sadhana S Sathaye, Manohar A Indap, Nawal Boukli, Jose W Rodriguez, Madhavan P N Nair

Study Type: In Vitro Study

Whole ginger extract reduces prostate tumor size by 56% in mice.

Article Published Date: Aug 18, 2011

Authors: Prasanthi Karna, Sharmeen Chagani, Sushma R Gundala, Padmashree C G Rida, Ghazia Asif, Vibhuti Sharma, Meenakshi V Gupta, Ritu Aneja

Study Type: Transgenic Animal Study

Study Type: In Vitro Study
Diseases: Prostate Cancer : CK(1499) : AC(438)
Substances: Curcumin : CK(4803) : AC(2175), Ginger : CK(696) : AC(184), Resveratrol : CK(1283) : AC(746)
Pharmacological Actions: Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)
Pharmacological Actions: Apoptotic: CK(2958) : AC(2075), Cell cycle arrest: CK(810) : AC(612)

Pyelonephritis (AC 1) (CK 2)

Both in vivo and in vitro results confirm the efficacy of black pepper, ginger and thyme extracts extracts as natural antimicrobials and suggests the possibility of using them in treatment procedures.

Article Published Date: Sep 30, 2014
Authors: M A Nassan, E H Mohamed
Study Type: Animal Study, In Vitro Study
Additional Links
Substances: Black Pepper: CK(229) : AC(96), Ginger: CK(696) : AC(184), Thyme: CK(81) : AC(40)
Diseases: Pyelonephritis: CK(17) : AC(4)
Pharmacological Actions: Antimicrobial: CK(293) : AC(128)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

Quality of Life: Poor (AC 1) (CK 10)

A statistically significant change from baseline for health related quality of life was detected after ginger essential oil inhalation.

Article Published Date: May 31, 2015
Authors: Pei Lin Lua, Noor Salihah, Nik Mazlan
Study Type: Human Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Radiation Induced Illness (AC 2) (CK 4)

Ginger exhibits behavioral radioprotection against radiation-induced taste aversion.

Article Published Date: Jun 01, 2006

Authors: Anupum Haksar, Ashok Sharma, Raman Chawla, Raj Kumar, Rajesh Arora, Surender Singh, J Prasad, M Gupta, R P Tripathi, M P Arora, F Islam, R K Sharma

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Radiation Induced Illness : CK(1046) : AC(264)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Radioprotective : CK(756) : AC(262)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger protects mice against radiation-induced lethality.

Article Published Date: Aug 01, 2004

Authors: Ganesh Jagetia, Manjeshwar Baliga, Ponemone Venkatesh

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Oxidative Stress : CK(3871) : AC(1382), Radiation Induced Illness : CK(1046) : AC(264)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Radioprotective : CK(756) : AC(262)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Respiratory Distress Syndrome (AC 1) (CK 10)

Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit.

Article Published Date: Feb 09, 2010

Authors: Zahra Vahdat Shariatpanahi, Fourogh Azam Taleban, Majid Mokhtari, Shaahin Shahbazi

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Gastroparesis : CK(107) : AC(13), Pneumonia : CK(409) : AC(55), Respiratory Distress Syndrome : CK(11) : AC(2)

Respiratory Syncytial Virus Infections (AC 1) (CK 5)

Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines.

Pubmed Data: J Ethnopharmacol. 2012 Nov 1. Epub 2012 Nov 1. PMID: 23123794

Article Published Date: Oct 31, 2012

Authors: Jung San Chang, Kuo Chih Wang, Chia Feng Yeh, Den En Shieh, Lien Chai Chiang

Study Type: Human In Vitro

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Respiratory Syncytial Virus Infections : CK(76) : AC(24)

Pharmacological Actions: Antiviral Agents : CK(938) : AC(433)

Additional Keywords: Fresh Versus Dried Potencies : CK(5) : AC(1)
Rhabdomyosarcoma (AC 1) (CK 1)

Mango ginger treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly.

Article Published Date: May 03, 2015

Authors: Cheppail Ramachandran, Karl-W Quirin, Enrique A Escalon, Ivonne V Lollett, Steven J Melnick

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Diseases: Rhabdomyosarcoma : CK(3) : AC(2)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bcl-2 protein down-regulation : CK(198) : AC(131), Cyclooxygenase 2 Inhibitors : CK(464) : AC(272), NF-kappaB Inhibitor : CK(1114) : AC(694), Tumor Suppressor Protein p53 Upregulation : CK(293) : AC(202)

Additional Keywords: Gene Expression Regulation : CK(431) : AC(214), Natural Substance/Drug Synergy : CK(352) : AC(142), Significant Treatment Outcome : CK(3038) : AC(366)

Rheumatoid Arthritis (AC 1) (CK 10)

Comparable efficacy of standardized Ayurveda formulation and hydroxychloroquine sulfate (HCQS) in the treatment of rheumatoid arthritis (RA).

Article Published Date: Jan 31, 2012

Authors: Arvind Chopra, Manjit Saluja, Girish Tillu, Anuradha Venugopalan, Gumdal Narsimulu, Rohini Handa, Lata Bichile, Ashwinikumar Raut, Sanjeev Sarmukaddam, Bhushan Patwardhan

Study Type: Human Study

Additional Links

Substances: Ayurvedic Formulations : CK(135) : AC(22), Ginger : CK(696) : AC(184)
Rhinovirus Infection (AC 1) (CK 1)

Ginger contains compounds which inhibit rhinoviral activity.

Pubmed Data: Brain Res. 2004 Sep 10;1020(1-2):1-11. PMID: 8064299
Article Published Date: Sep 10, 2004
Authors: C V Denyer, P Jackson, D M Loakes, M R Ellis, D A Young
Study Type: In Vitro Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Diseases: Rhinovirus Infection: CK(39): AC(20)
Pharmacological Actions: Antiviral Agents: CK(938): AC(433)

Salmonella Infections (AC 1) (CK 1)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014
Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay
Study Type: In Vitro Study
Additional Links
Additional Keywords: Essential Oils: CK(181): AC(69), Natural Substance Synergy: CK(540): AC(249)

Schistosomiasis (AC 1) (CK 2)

Ginger has antischistosomal activity effect against Schistosoma mansoni harbored in mice.

Article Published Date: Mar 01, 2009
Authors: Osama M S Mostafa, Refaat A Eid, Mohamed A Adly
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Diseases: Schistosomiasis: CK(10): AC(6)

Skin Cancer: Squamous Cell (AC 1) (CK 1)

A compound from ginger, 6]-gingerol, may be an effective agent in the treatment of skin cancer.

Article Published Date: Sep 14, 2009
Authors: Nidhi Nigam, Kulpreet Bhui, Sahdeo Prasad, Jasmine George, Yogeshwer Shukla
Study Type: In Vitro Study
Additional Links
Staphylococcus aureus infection (AC 2) (CK 2)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014

Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type: In Vitro Study

Additional Links

Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475), Antimicrobial : CK(293) : AC(128), Antioxidants : CK(7529) : AC(2682)

Additional Keywords: Essential Oils : CK(181) : AC(69), Natural Substance Synergy : CK(540) : AC(249)

Ginger and bitter kola exhibit antibacterial effects on respiratory tract pathogens.

Article Published Date: Nov 01, 2002

Authors: J F T K Akoachere, R N Ndip, E B Chenwi, L M Ndip, T E Njock, D N Anong

Study Type: In Vitro Study

Additional Links

Substances: Garcinia kola : CK(13) : AC(3), Ginger : CK(696) : AC(184)

Diseases: Haemophilus influenzae : CK(44) : AC(8), Staphylococcus aureus infection : CK(152)
Steatorrhea (AC 1) (CK 2)

Dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase.

Article Published Date: Sep 13, 2011

Authors: Usha Ns Prakash, Krishnapura Srinivasan

Study Type: Animal Study

Additional Links

Substances: Capsaicin : CK(129) : AC(55), Ginger : CK(696) : AC(184), Piperine : CK(114) : AC(60)

Diseases: Fat Malabsorption : CK(2) : AC(1), Indigestion: Fats : CK(2) : AC(1), Steatorrhea : CK(12) : AC(2)

Pharmacological Actions: Enzyme Inhibitors: Pancreatic Lipase : CK(12) : AC(2)

Streptococcus pyogenes (AC 1) (CK 1)

Ginger and bitter kola exhibit antibacterial effects on respiratory tract pathogens.

Article Published Date: Nov 01, 2002

Authors: J F T K Akoachere, R N Ndip, E B Chenwi, L M Ndip, T E Njock, D N Anong

Study Type: In Vitro Study

Additional Links

Substances: Garcinia kola : CK(13) : AC(3), Ginger : CK(696) : AC(184)

Diseases: Haemophilus influenzae : CK(44) : AC(8), Staphylococcus aureus infection : CK(152) :
Stroke: PostStroke Urinary Disorders (AC 1) (CK 10)

Ginger-salt moxibustion is therapeutic for poststroke urinary disorders.

Pubmed Data: Zhongguo Zhen Jiu. 2006 Sep;26(9):621-4. PMID: 17036477
Authors: Hui-lin Liu, Lin-peng Wang
Study Type: Human Study

Additional Links
Substances: Ginger : CK(696) : AC(18)
Diseases: Neurogenic Bladder : CK(91) : AC(10), Stroke: PostStroke Urinary Disorders : CK(10) : AC(1)
Therapeutic Actions: Moxibustion : CK(274) : AC(28)

Thrombosis (AC 1) (CK 1)

Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and may be useful as natural antithrombotic agents.

Authors: K C Srivastava
Study Type: In Vitro Study

Additional Links
Toxoplasma gondii Infection (AC 1) (CK 1)

A review of medicinal plants that exhibit anti-Toxoplasma effects.

Article Published Date: Jul 31, 2016

Authors: Ibrahim Al Nasr, Faiyaz Ahmed, Fawaz Pullishery, Saeed El-Ashram, Vardharajula Venkata Ramaiah

Study Type: Review

Additional Links

Diseases: Toxoplasma gondii Infection : CK(258) : AC(44)

Pharmacological Actions: Antiparasitic Agents : CK(68) : AC(40)

Trigeminal Neuralgia (AC 1) (CK 2)

The traditional Japanese herbal formula Saiko-Keishi-To controls pain in trigeminal neuralgia in rats.

Article Published Date: May 01, 2001

Authors: M Sunagawa, M Okada, S Y Guo, T Hisamitsu

Study Type: Animal Study

Additional Links

Substances: Bupleurum : CK(6) : AC(3), Chinese Skullcap : CK(127) : AC(66), Cinnamon : CK(245) :
Triglycerides: Elevated (AC 1) (CK 10)

Daily administration of 1,000 mg ginger reduces serum triglyceride concentration, which is a risk factor for cardiovascular disease in peritoneal dialysis patients.

Article Published Date: Oct 15, 2015

Authors: Hadi Tabibi, Hossein Imani, Shahnaz Atabak, Iraj Najafi, Mehdi Hedayati, Leila Rahmani

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cardiovascular Disease: Prevention : CK(3250) : AC(433), Hemodialysis : CK(463) : AC(49), Triglycerides: Elevated : CK(718) : AC(117)

Pharmacological Actions: Hypolipidemic : CK(1288) : AC(265)

Additional Keywords: Risk Reduction : CK(6417) : AC(686)

Tuberculosis (AC 1) (CK 10)

Ginger supplementation with antitubercular treatment significantly lowered TNF alpha, ferritin and MDA concentrations.

Pubmed Data: J Complement Integr Med. 2016 Jun 1 ;13(2):201-6. PMID: 27089418

Article Published Date: May 31, 2016

Authors: Rashmi Anant Kulkarni, Ajit Ramesh Deshpande

Study Type: Human Study

Additional Links
Tumors (AC 1) (CK 1)

Zingiber zerumbet (a member of the ginger family) contains compounds that inhibit histone deacetylase and exhibited growth inhibitory activity on various human tumor cell lines.

Article Published Date: Oct 01, 2008

Authors: Ill-Min Chung, Min-Young Kim, Won-Hwan Park, Hyung-In Moon

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Tumors : CK(203) : AC(119)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Histone deacetylase inhibitor : CK(48) : AC(37)

Upper Respiratory Infections (AC 1) (CK 1)

Ginger and bitter kola exhibit antibacterial effects on respiratory tract pathogens.

Article Published Date: Nov 01, 2002
Uremia (AC 1) (CK 2)

Ginger extract markedly decreases Blood Urea Nitrogen (BUN) in a mouse model of uremia.

Article Published Date : Sep 01, 2007

Authors : Modaresi Mehrdad, Manouchehr Messripour, Mozhgan Ghobadipour

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Uremia : CK(93) : AC(21)

Uterine Bleeding (AC 1) (CK 10)

Ginger is an effective supplement for heavy menstrual bleeding.

Article Published Date : Oct 07, 2014

Authors : Farzaneh Kashefi, Marjan Khajehei, Mohammad Alavinia, Ebrahim Golmakani, Javad Asili

Study Type : Human Study

Additional Links

Substances : Ginger : CK(696) : AC(184)
Vertigo (AC 1) (CK 10)

Ginger root reduces vertigo in human subjects.

Article Published Date : Jan 01, 1986

Authors : A Grøntved, E Hentzer

Study Type : Human Study

Substances : Ginger : CK(696) : AC(184)

Diseases : Vertigo : CK(61) : AC(6)

Weight Problems: Appetite (AC 1) (CK 10)

Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men.

Article Published Date : Sep 30, 2012

Authors : Muhammad S Mansour, Yu-Ming Ni, Amy L Roberts, Michael Kelleman, Arindam Roychoudhury, Marie-Pierre St-Onge

Study Type : Human Study

Substances : Ginger : CK(696) : AC(184)

Diseases : Overweight : CK(3320) : AC(544), Weight Problems: Appetite : CK(162) : AC(22)

Pharmacological Actions : Thermogenic : CK(57) : AC(9)
Ginger is an aldose reductase inhibitor which may have contribute to the protection against diabetic complications.

Pubmed Data: J Agric Food Chem. 2006 Sep 6;54(18):6640-4. PMID: 16939321

Article Published Date: Sep 06, 2006

Authors: Atsushi Kato, Yasuko Higuchi, Hirozo Goto, Haruhisa Kizu, Tadashi Okamoto, Naoki Asano, Jackie Hollinshead, Robert J Nash, Isao Adachi

Study Type: Human Study

Pharmacological Actions: Aldose reductase inhibitor

Ginger supplementation is an effective treatment for type 2 diabetes.

Article Published Date: Feb 03, 2014

Authors: Tahereh Arablou, Naheed Aryaeian, Majid Valizadeh, Faranak Sharifi, Aghafatemeh Hosseini, Mahmoud Djalali

Study Type: Human Study

Pharmacological Actions: Aldose reductase inhibitor
Collectively these RCTs provide suggestive evidence for the effectiveness of 750-2000 mg ginger powder during the first 3-4 days of menstrual cycle for primary dysmenorrhea.

Article Published Date: Jul 13, 2015

Authors: James W Daily, Xin Zhang, Da Sol Kim, Sunmin Park

Study Type: Meta Analysis, Review

Substances: Ginger : CK(696) : AC(184)

Diseases: Dysmenorrhea : CK(445) : AC(45)

Pharmacological Actions: Analgesics : CK(1327) : AC(217)

Additional Keywords: Significant Treatment Outcome : CK(3038) : AC(366)

Ginger (Zingiber officinale Roscoe) elicits antinociceptive properties and potentiates morphine-induced analgesia in the rat radiant heat tail-flick test.

Article Published Date: Nov 30, 2010

Authors: Reza Sepahvand, Saeed Esmaeili-Mahani, Ardeshir Arzi, Bahram Rasoulian, Mehdi Abbasnejad

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Morphine Tolerance/Dependence : CK(75) : AC(31), Pain : CK(845) : AC(136)

Pharmacological Actions: Analgesics : CK(1327) : AC(217)

Additional Keywords: Drug Synergy : CK(351) : AC(156), Phytotherapy : CK(1216) : AC(221), Plant Extracts : CK(7645) : AC(2539)

Ginger and cinnamon intake have positive effects on inflammation and muscle soreness endued by exercise in Iranian female athletes.

The traditional Japanese herbal formula Saiko-Keishi-To controls pain in trigeminal neuralgia in rats.

Pubmed Data: Masui. 2001 May;50(5):486-90. PMID: 11424461

Treatment of primary dysmenorrhea in students with ginger for 5 days had a statistically significant effect on relieving intensity and duration of pain.

Two grams of ginger may have anti-inflammation and analgesic effect on delayed onset muscle soreness.

Zingiberaceae extracts are clinically effective hypoalgesic agents and the available data show a better safety profile than non steroidal anti inflammatory drugs.

Article Published Date : Dec 31, 2014
Authors : Shaheen E Lakhan, Christopher T Ford, Deborah Tepper
Study Type : Meta Analysis, Review
Additional Links
Substances : Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)
Diseases : Chronic Pain : CK(206) : AC(33)
Pharmacological Actions : Analgesics : CK(1327) : AC(217)
Additional Keywords : Natural Substances Versus Drugs : CK(1698) : AC(302), Superiority of Natural Substances versus Drugs : CK(1316) : AC(251)
Problem Substances : Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) : CK(1905) : AC(215)

Ginger and constituent 6-gingerol could be used the prevention or alleviation of allergic rhinitis symptoms.

Pubmed Data : J Nutr Biochem. 2015 Sep 1. Epub 2015 Sep 1. PMID: 26403321
Article Published Date : Aug 31, 2015
Authors : Yoshiyuki Kawamoto, Yuki Ueno, Emiko Nakahashi, Momoko Obayashi, Kento Sugihara, Shanlou Qiao, Machiko Iida, Mayuko Y Kumasaka, Ichiro Yajima, Yuji Goto, Nobutaka Ohgami, Masashi Kato, Kozue Takeda
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
Diseases : Allergic Rhinitis : CK(392) : AC(52), Allergic Rhinitis: Prevention : CK(12) : AC(2)

Anti-Angiogenic (AC 1) (CK 2)

Zingiber officinale attenuates retinal microvascular changes in STZ-induced diabetic rats.

Article Published Date: Dec 31, 2015

Authors: Shirish Dongare, Suresh K Gupta, Rajani Mathur, Rohit Saxena, Sandeep Mathur, Renu Agarwal, Tapas C Nag, Sushma Srivastava, Pankaj Kumar

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696): AC(184), Gingerol: CK(53): AC(31)

Diseases: Diabetic Complications: CK(1563): AC(333)

Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Anti-Bacterial Agents (AC 4) (CK 5)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014

Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type: In Vitro Study

Additional Links

Ginger and bitter kola exhibit antibacterial effects on respiratory tract pathogens.

Article Published Date: Nov 01, 2002

Authors: J F T K Akoachere, R N Ndip, E B Chenwi, L M Ndip, T E Njock, D N Anong

Study Type: In Vitro Study

Additional Links

Substances: Garcinia kola : CK(13) : AC(3), Ginger : CK(696) : AC(184)

Diseases: Haemophilus influenzae : CK(44) : AC(8), Staphylococcus aureus infection : CK(152) : AC(108), Streptococcus pyogenes : CK(29) : AC(18), Upper Respiratory Infections : CK(950) : AC(114)

Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger has a gastroprotective effect through its acid blocking and anti-Helicobacter pylori activity.

Pubmed Data: Evid Based Complement Alternat Med. 2009 Jul 1. PMID: [19570992](https://pubmed.ncbi.nlm.nih.gov/19570992/)

Article Published Date: Jul 01, 2009

Authors: Siddaraju M Nanjundaiaiah, Harish Nayaka Mysore Annaiah, Shylaja M Dharmesh

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Acid Reflux : CK(298) : AC(43), Gastroesophageal Reflux : CK(299) : AC(44), Helicobacter Pylori Infection : CK(506) : AC(104)

Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475), Proton Pump Inhibitor : CK(36) : AC(13)

Additional Keywords: Natural Substances Versus Drugs : CK(1698) : AC(302), Prevacid (Lansoprazole) Alternatives : CK(6) : AC(3)

These spices could be as potential antimicrobial agents for inclusion in the anti-enterococcal treatment regimen.

Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

These findings showed the potential effects of 6S and 6G on the prevention of protein glycation.
"Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats."

Article Published Date: Dec 01, 2008

Authors: Shafina Hanim Mohd Habib, Suzana Makpol, Noor Aini Abdul Hamid, Srijit Das, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Liver Cancer: Prevention : CK(184) : AC(38)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Antineoplastic Agents : CK(1158) : AC(639), NF-kappaB Inhibitor : CK(1114) : AC(694), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

6-Gingerol, a compound found within ginger, inhibits inflammation.

Article Published Date: Apr 24, 2009

Authors: Tzung-Yan Lee, Ko-Chen Lee, Shih-Yuan Chen, Hen-Hong Chang

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Inflammation : CK(3240) : AC(882)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)
6-gingerol may be useful in the prevention and treatment of Alzheimer's disease.

Article Published Date: Mar 25, 2015
Authors: Gao-Feng Zeng, Shao-Hui Zong, Zhi-Yong Zhang, Song-Wen Fu, Ke-Ke Li, Ye Fang, Li Lu, De-Qiang Xiao
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696) : AC(184), Gingerol: CK(53) : AC(31)
Diseases: Alzheimer's Disease: CK(1292) : AC(382), Oxidative Stress: CK(3871) : AC(1382)
Pharmacological Actions: Anti-Inflammatory Agents: CK(4861) : AC(1630), Antioxidants: CK(7529) : AC(2682), Neuroprotective Agents: CK(2360) : AC(1099), Nitric Oxide Inhibitor: CK(223) : AC(108)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia.

Article Published Date: Dec 31, 2014
Authors: Bhakta Prasad Gaire, Oh Wook Kwon, Sung Hyuk Park, Kwang-Hoon Chun, Sun Yeou Kim, Dong Yun Shin, Ji Woong Choi
Study Type: In Vitro Study
Additional Links
Substances: Ginger: CK(696) : AC(184)
Diseases: Brain Inflammation: CK(274) : AC(145), Central Nervous System Diseases: CK(6) : AC(6), Cerebral Ischemia: CK(229) : AC(77)
Pharmacological Actions: Anti-Inflammatory Agents: CK(4861) : AC(1630), Neuroprotective Agents: CK(2360) : AC(1099), Tumor Necrosis Factor (TNF) Alpha Inhibitor: CK(1823) : AC(669)
Additional Keywords: Paradols: CK(1) : AC(1)

A combination of ginger and peony root may prevent memory impairment in AD by inhibiting Aβ accumulation and inflammation in the brain.

Article Published Date: Nov 29, 2015
Authors: Soonmin Lim, Jin Gyu Choi, Minho Moon, Hyo Geun Kim, Wonil Lee, Hyoung-Rok Bak, Hachang Sung, Chi Hye Park, Sun Yeou Kim, Myung Sook Oh
Study Type: Transgenic Animal Study
A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013
Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid
Study Type: Review

An extract of Z. cassumunar and its constituent should be benefit to ameliorate inflammation and hypersensitiveness of airway epithelium.

Article Published Date: Feb 28, 2015
Authors: Orapan Poachanukoon, Ladda Meesuk, Napaporn Pattanacharoenchai, Paopanga Monthanapisut, Thaweephol Dechatiwongse Na Ayudhya, Sittichai Koontongkaew
Study Type: In Vitro Study
inflammation and muscle soreness endued by exercise in Iranian female athletes.

Article Published Date: Mar 31, 2013
Authors: Nafiseh Shokri Mashhadi, Reza Ghiavand, Gholamreza Askari, Awat Feizi, Mitra Hariri, Leila Darvishi, Azam Barani, Maryam Taghiyar, Afshin Shiranian, Maryam Hajishafiee
Study Type: Human Study
Additional Links
Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)
Diseases: Inflammation : CK(3240) : AC(882), Muscle Soreness: Exercise-Induced : CK(164) : AC(18)
Pharmacological Actions: Analgesics : CK(1327) : AC(217), Anti-Inflammatory Agents : CK(4861) : AC(1630)

Ginger and turmeric rhizomes decreased the anti-inflammatory cytokines in hypertensive rats.

Article Published Date: Mar 21, 2016
Authors: Ayodele Jacob Akinyemi, Gustavo Roberto Thomé, Vera Maria Morsch, Nathieli B Bottari, Jucimara Baldissarelli, Lizielle Souza de Oliveira, Jeferson Ferraz Goularte, Adriane Belló-Klein, Thiago Duarte, Marta Duarte, Aline Augusti Boligon, Margareth Linde Athayde, Akintunde Afolabi Akindahunsi, Ganiyu Oboh, Maria Rosa Chitolina Schetinger
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)
Diseases: Hypertension : CK(2984) : AC(406), Inflammation : CK(3240) : AC(882)
Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Interleukin-10 downregulation : CK(128) : AC(45), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Ginger powder supplementation can reduce inflammatory markers in patients with knee osteoarthritis.

Article Published Date: Jun 30, 2016
Authors: Zahra Naderi, Hassan Mozaffari-Khosravi, Ali Dehghan, Azadeh Nadjarzadeh, Hassan Fallah Huseini
Study Type: Human Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: C-Reactive Protein : CK(1852) : AC(174), Osteoarthritis: Knee : CK(517) : AC(53)
Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Nitric Oxide Inhibitor :
Ginger supplementation with antitubercular treatment significantly lowered TNF alpha, ferritin and MDA concentrations.

Pubmed Data: J Complement Integr Med. 2016 Jun 1;13(2):201-6. PMID: 27089418
Article Published Date: May 31, 2016
Authors: Rashmi Anant Kulkarni, Ajit Ramesh Deshpande
Study Type: Human Study

The combination of ginger and gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

Article Published Date: Dec 31, 2014
Authors: Analhuda Abdullah Tahir, Nur Fathiah Abdul Sani, Noor Azian Murad, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof
Study Type: In Vitro Study

The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases.

Article Published Date: Dec 31, 2015
This review indicates that ginger possesses multiple properties that could be beneficial in reducing chemotherapy induced nausea and vomiting.

Article Published Date: Apr 06, 2015

Authors: Wolfgang Marx, Karin Ried, Alexandra L McCarthy, Luis Vitetta, Avni Sali, Daniel McKavanagh, Elisabeth Isenring

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Chemotherapy-Induced Nausea : CK(153) : AC(17)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Chemotherapeutic : CK(397) : AC(152), Gastrointestinal Agents : CK(268) : AC(41)

Two grams of ginger may have anti-inflammation and analgesic effect on delayed onset muscle soreness.

Article Published Date: Dec 31, 2014

Authors: Khadijeh Hoseinzadeh, Farhad Daryanoosh, Parvin Javad Baghdasar, Hamid Alizadeh

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Muscle Soreness : CK(25) : AC(5)

Pharmacological Actions: Analgesics : CK(1327) : AC(217), Anti-Inflammatory Agents : CK(4861) : AC(1630)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Z. officinale paste could be used as natural spice and a potent antitumour agent.

Article Published Date: Jul 18, 2016

Authors: Sundararaj Rubila, Thottiam Vasudevan Ranganathan, Kunnathur Murugesan Sakthivel
Zingiber officinale attenuates retinal microvascular changes in STZ-induced diabetic rats.

Article Published Date: Dec 31, 2015

Authors: Shirish Dongare, Suresh K Gupta, Rajani Mathur, Rohit Saxena, Sandeep Mathur, Renu Agarwal, Tapas C Nag, Sushma Srivastava, Pankaj Kumar

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Diabetic Complications : CK(1563) : AC(333)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Anti-Platelet (AC 1) (CK 1)

Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and may be useful as natural antithrombotic agents.

Pubmed Data: Biomed Biochim Acta. 1984;43(8-9):S335-46. PMID: [6440548](#)

Article Published Date: Jan 01, 1984

Authors: K C Srivastava

Study Type: In Vitro Study

Substances: Garlic : CK(722) : AC(226), Ginger : CK(696) : AC(184), Onion : CK(235) : AC(57)

Diseases: Thrombosis : CK(316) : AC(81)

Pharmacological Actions: Anti-Platelet : CK(125) : AC(38), Anti-thrombotic : CK(56) : AC(24)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Anti-metastatic (AC 5) (CK 5)

A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013
Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid
Study Type: Review
Additional Links
Substances: Ginger : CK(696) : AC(184)
Therapeutic Actions: Exercise : CK(1278) : AC(196)

Gingerol, a compound found within ginger, inhibits metastasis of human breast cancer cells.

Article Published Date: May 01, 2008
Authors: Hyun Sook Lee, Eun Young Seo, Nam E Kang, Woo Kyung Kim
Study Type: In Vitro Study
Additional Links
Substances: Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)
Diseases: Breast Cancer : CK(3592) : AC(1064), Cancer Metastasis : CK(442) : AC(206)
Pharmacological Actions: Anti-metastatic : CK(634) : AC(414), Antiproliferative : CK(2546) : AC(1685), Matrix metalloproteinase-2 (MMP-2) inhibitor : CK(287) : AC(147)

In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and
patients have been described.

In vivo and in vitro studies have established that phenolic components of ginger induce apoptosis and autophagy and inhibit metastasis.

This reviews the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer.
Anti-thrombotic (AC 1) (CK 1)

Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and may be useful as natural antithrombotic agents.

Pubmed Data: Biomed Biochim Acta. 1984;43(8-9):S335-46. PMID: 6440548

Article Published Date: Jan 01, 1984

Authors: K C Srivastava

Study Type: In Vitro Study

Additional Links

Substances: Garlic : CK(722) : AC(226), Ginger : CK(696) : AC(184), Onion : CK(235) : AC(57)

Diseases: Thrombosis : CK(316) : AC(81)

Pharmacological Actions: Anti-Platelet : CK(125) : AC(38), Anti-thrombotic : CK(56) : AC(24)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Anticarcinogenic Agents (AC 4) (CK 5)

Ginger contains the compound zerumbone, which inhibits colon and lung carcinogenesis in mice.

Pubmed Data: Int J Cancer. 2009 Jan 15;124(2):264-71. PMID: 19003968

Article Published Date: Jan 15, 2009

Authors: Mihye Kim, Shingo Miyamoto, Yumiko Yasui, Takeru Oyama, Akira Murakami, Takuji Tanaka

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Colon Cancer : CK(749) : AC(430), Lung Cancer : CK(1043) : AC(393)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), NF-kappaB Inhibitor : CK(1114) : AC(694)
Ginger contains the compound zerumbone, which may have chemopreventive activity through activating phase II drug metabolizing enzymes.

Article Published Date: Aug 13, 2004

Authors: Yoshimasa Nakamura, Chiho Yoshida, Akira Murakami, Hajime Ohigashi, Toshihiko Osawa, Koji Uchida

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), Antioxidants : CK(7529) : AC(2682), Phase II Detoxification Enzyme Inducer : CK(78) : AC(40)

Ginger has therapeutic properties relevant to cancer treatment.

Article Published Date: Jul 01, 2011

Authors: M M Pereira, R Haniadka, P P Chacko, P L Palatty, M S Baliga

Study Type: Review

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596), Cancers: Drug Resistant : CK(352) : AC(223)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), Chemosensitizer : CK(394) : AC(286), Radioprotective : CK(756) : AC(262)

In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.

Article Published Date: Dec 31, 2014

Authors: Sahdeo Prasad, Amit K Tyagi

Study Type: Review

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Cancers: All : CK(14773) : AC(4596), Gastrointestinal Cancer : CK(47) : AC(14)

Pharmacological Actions: Anti-metastatic : CK(634) : AC(414), Anticarcinogenic Agents : CK(1099)
Anticholesteremic Agents (AC 1) (CK 10)

The herbal remedies examined had significantly beneficial effects on cholesterol in T2D patients.

Article Published Date: Aug 31, 2014

Authors: Paria Azimi, Reza Ghiasvand, Awat Feizi, Mitra Hariri, Behnoud Abbasi

Study Type: Human Study

Additional Links

Diseases: Diabetes Mellitus: Type 2: CK(3572): AC(624), High Cholesterol: CK(1774): AC(271)

Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Antiemetics (AC 2) (CK 20)

Ginger root powder is effective in reducing severity of acute and delayed chemotherapy-induced nausea and vomiting as additional therapy to ondansetron and dexamethasone in patients receiving chemotherapy.

Article Published Date: Sep 14, 2010

Authors: Anu Kochanujan Pillai, Kamlesh K Sharma, Yogendra K Gupta, Sameer Bakhshi
Protein and ginger may have therapeutic value in the treatment of chemotherapy-induced delayed nausea.

Pubmed Data: J Altern Complement Med. 2008 Jun;14(5):545-51. PMID: [18537470](#)

Article Published Date: Jun 01, 2008

Authors: Max E Levine, Marcum G Gillis, Sara Yanchis Koch, Anne C Voss, Robert M Stern, Kenneth L Koch

Study Type: Human Study

Substances: Ginger (696) : AC(184), Protein Supplement (73) : AC(7)

Diseases: Chemotherapy-Induced Nausea (153) : AC(17), Nausea (50) : AC(5)

Pharmacological Actions: Antiemetics (40) : AC(4)

Antigiardial agents (AC 1) (CK 2)

Ginger and cinnamon extracts had potential therapeutic effects on *G. lamblia* infection in albino rats as a promising alternative therapy to the commonly used antigiardial drugs.

Pubmed Data: Iran J Parasitol. 2014 Oct-Dec;9(4):530-40. PMID: [25759734](#)

Article Published Date: Sep 30, 2014

Authors: Abeer Mahmoud, Rasha Attia, Safaa Said, Zedan Ibraheim

Study Type: Animal Study

Substances: Cinnamon (245) : AC(89), Ginger (696) : AC(184)

Diseases: Giardiasis (29) : AC(8)

Pharmacological Actions: Antigiardial agents (4) : AC(2), Antioxidants (7529) : AC(2682), Antiprotozoal Agents (47) : AC(19)

Additional Keywords: Plant Extracts (7645) : AC(2539), Significant Treatment Outcome (24) : AC(4)
Ginger lowers blood pressure through blockade of voltage-dependent calcium channels.

Pubmed Data: J Cardiovasc Pharmacol. 2005 Jan;45(1):74-80. PMID: 15613983

Article Published Date: Jan 01, 2005

Authors: Muhammad Nabeel Ghayur, Anwarul Hassan Gilani

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Hypertension : CK(2984) : AC(406)

Pharmacological Actions: Antihypertensive Agents : CK(1178) : AC(164), Calcium Channel Blockers : CK(87) : AC(23)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Supplementation with turmeric or ginger modulated the hydrolysis of ATP, ADP and AMP.

Article Published Date: May 05, 2016

Authors: Ayodele Jacob Akinyemi, Gustavo Roberto Thomé, Vera Maria Morsch, Nathieli B Bottari, Jucimara Baldissarelli, Lizielle Souza de Oliveira, Jeferson Ferraz Goularte, Adriane Belló-Klein, Ganiyu Oboh, Maria Rosa Chitolina Schetinger

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Diseases: Hypertension : CK(2984) : AC(406)

Pharmacological Actions: Antihypertensive Agents : CK(1178) : AC(164)
Both in vivo and in vitro results confirm the efficacy of black pepper, ginger and thyme extracts as natural antimicrobials and suggests the possibility of using them in treatment procedures.

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

This study confirmed the potential of selected extracts of spices as effective natural food preservative in juices.
Antineoplastic Agents (AC 4) (CK 15)

"Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats."

Article Published Date: Dec 01, 2008

Authors: Shafina Hanim Mohd Habib, Suzana Makpol, Noor Aini Abdul Hamid, Srijit Das, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: Animal Study

A compound in ginger known as 6-Gingerol prevents cisplatin-induced acute renal failure in rats.

Article Published Date: Apr 06, 2005

Authors: Anurag Kuhad, Naveen Tirkey, Sangeeta Pilkhwal, Kanwaljit Chopra

Study Type: Animal Study

Additional Links
Diseases: Foodborne Pathogens: Prevention/Food Preservation : CK(19) : AC(18)
Pharmacological Actions: Antimicrobial : CK(293) : AC(128), Food Preservatives : CK(1) : AC(1)
Additional Keywords: Fruit Juice : CK(85) : AC(11), Plant Extracts : CK(7645) : AC(2539)
Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea.

Article Published Date: Jun 30, 2012

Authors: Julie L Ryan, Charles E Heckler, Joseph A Roscoe, Shaker R Dakhil, Jeffrey Kirshner, Patrick J Flynn, Jane T Hickok, Gary R Morrow

Study Type: Human Study

Substances: Ginger

Diseases: Chemotherapy-Induced Nausea

Pharmacological Actions: Antineoplastic Agents

Additional Keywords: Phytotherapy

Metabolites of [6]-shogaoal can account for the bioactivity of the parent compound, and specifically triggers molecular pathways responsible for cancer cell death in a similar fashion.

Article Published Date: Dec 31, 2012

Authors: Yingdong Zhu, Renaud F Warin, Dominique N Soroka, Huadong Chen, Shengmin Sang

Study Type: In Vitro Study

Substances: 6-Shogaol, Ginger, Gingerol

Diseases: Colon Cancer, Lung Cancer

Pharmacological Actions: Antineoplastic Agents, Antiproliferative, Apoptotic, Chemopreventive

Additional Keywords: Metabolites

Antioxidants (AC 19) (CK 38)

6-Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption.
6-gingerol may be useful in the prevention and treatment of alzheimer's disease.

Article Published Date: Mar 25, 2015

Authors: Gao-Feng Zeng, Shao-Hui Zong, Zhi-Yong Zhang, Song-Wen Fu, Ke-Ke Li, Ye Fang, Li Lu, De-Qiang Xiao

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Alzheimer's Disease : CK(1292) : AC(382), Oxidative Stress : CK(3871) : AC(1382)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Antioxidants : CK(7529) : AC(2682), Neuroprotective Agents : CK(2360) : AC(1099), Nitric Oxide Inhibitor : CK(223) : AC(108)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596), Inflammation : CK(3240) : AC(882), Liver Disease: Oxidative Stress : CK(9) : AC(5), Muscle Soreness : CK(25) : AC(5)

Therapeutic Actions: Exercise : CK(1278) : AC(196)

Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

Article Published Date: Feb 14, 2016

Authors: Chethan Sampath, Yingdong Zhu, Shengmin Sang, Mohamed Ahmedna

Study Type: In Vitro Study

Additional Links

Substances: Apple Polyphenols : CK(31) : AC(17), EGCG (Epigallocatechin gallate) : CK(1956) : AC(314), Ginger : CK(696) : AC(184)

Diseases: Advanced Glycation End products (AGE) : CK(231) : AC(73), Diabetic Complications : CK(1563) : AC(333)

Pharmacological Actions: Anti-Glycation Agents : CK(46) : AC(19), Antioxidants : CK(7529) : AC(2682), Nrf2 activation : CK(177) : AC(86)

Combined ginger and cinnamon have significant beneficial effects on the sperm viability, motility, and serum total testosterone, LH, FSH and serum anti-oxidants level

Article Published Date: Dec 31, 2013

Authors: Arash Khaki, Amir Afshin Khaki, Laleh Hajhosseini, Farhad Sadeghpour Golzar, Nava Ainehchi

Study Type: Animal Study

Additional Links

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Diabetic Complications : CK(1563) : AC(333)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Spermatogenic : CK(12) : AC(2)

Coriander and cumin seed oil combination might be used as a potential source of safe and effective natural antimicrobial and antioxidant agent.

Article Published Date: Dec 31, 2014

Authors: Anwesa Bag, Rabi Ranjan Chattopadhyay

Study Type: In Vitro Study

Additional Links
Dietary ginger has a protective effect on lindane-induced oxidative stress in rats.

Dietary ginger has a hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.

Ginger and cinnamon extracts had potential therapeutic effects on G. lamblia infection in albino rats as a promising alternative therapy to the commonly used
antigiardial drugs.

Article Published Date: Sep 30, 2014

Authors: Abeer Mahmoud, Rasha Attia, Safaa Said, Zedan Ibraheim

Study Type: Animal Study

Additional Links

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Giardiasis : CK(29) : AC(8)

Pharmacological Actions: Antigiardial agents : CK(4) : AC(2), Antioxidants : CK(7529) : AC(2682), Antiprotozoal Agents : CK(47) : AC(19)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539), Significant Treatment Outcome : CK(24) : AC(4)

Ginger contains the compound zerumbone, which may have chemopreventive activity through activating phase II drug metabolizing enzymes.

Article Published Date: Aug 13, 2004

Authors: Yoshimasa Nakamura, Chiho Yoshida, Akira Murakami, Hajime Ohigashi, Toshihiko Osawa, Koji Uchida

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), Antioxidants : CK(7529) : AC(2682), Phase II Detoxification Enzyme Inducer : CK(78) : AC(40)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger exhibits behavioral radioprotection against radiation-induced taste aversion.

Article Published Date: Jun 01, 2006

Authors: Anupum Haksar, Ashok Sharma, Raman Chawla, Raj Kumar, Rajesh Arora, Surender Singh, J Prasad, M Gupta, R P Tripathi, M P Arora, F Islam, R K Sharma

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Radiation Induced Illness : CK(1046) : AC(264)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Radioprotective : CK(756) : AC(262)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Ginger extract has an ameliorative effect on paraben-induced lipid peroxidation in the liver of mice.

Article Published Date : May 01, 2009
Authors : Veena M Asnani, Ramtej J Verma
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Parabens-Associated Toxicity : CK(16) : AC(5)
Pharmacological Actions : Antioxidants : CK(7529) : AC(2682)
Additional Keywords : Plant Extracts : CK(7645) : AC(2539)

Ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

Article Published Date : Mar 31, 2014
Authors : K D Prasanna P Gunathilake, H P Vasantha Rupasinghe
Study Type : In Vitro Study
Additional Links
Substances : 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184)
Diseases : Cholesterol: Oxidation : CK(518) : AC(117)
Pharmacological Actions : Antioxidants : CK(7529) : AC(2682)
Additional Keywords : Plant Extracts : CK(7645) : AC(2539)

Ginger protects mice against radiation-induced lethality.

Article Published Date : Aug 01, 2004
Authors : Ganesh Jagetia, Manjeshwar Baliga, Ponemone Venkatesh
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Oxidative Stress : CK(3871) : AC(1382), Radiation Induced Illness : CK(1046) : AC(264)
Pharmacological Actions : Antioxidants : CK(7529) : AC(2682), Radioprotective : CK(756) : AC(262)
Additional Keywords : Plant Extracts : CK(7645) : AC(2539)

Ginger significantly reduces paraben induced lipid peroxidation in liver and kidney cells.
Ginger supplementation with antitubercular treatment significantly lowered TNF alpha, ferritin and MDA concentrations.

The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases.

Turmeric and ginger were effective in eliminating arsenic from the body but could protect from possible damage.
caused by arsenic exposure.

Article Published Date : Aug 01, 2016
Authors : Suman Biswas, Chinmoy Maji, Prasanta Kumar Sarkar, Samar Sarkar, Abichal Chattopadhyay, Tapan Kumar Mandal
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)
Diseases : Arsenic Poisoning : CK(160) : AC(49)
Pharmacological Actions : Antioxidants : CK(7529) : AC(2682), Cytoprotective : CK(190) : AC(94), Detoxifier : CK(408) : AC(131)

Z. officinale paste could be used as natural spice and a potent antitumour agent.

Article Published Date : Jul 18, 2016
Authors : Sundararaj Rubila, Thottiam Vasudevan Ranganathan, Kunnathur Murugesan Sakthivel
Study Type : In Vitro Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Lymphoma: Dalton's : CK(3) : AC(2)
Pharmacological Actions : Anti-Inflammatory Agents : CK(4861) : AC(1630), Antioxidants : CK(7529) : AC(2682), Interleukin-1 beta downregulation : CK(478) : AC(205), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Antiparasitic Agents (AC 5) (CK 6)

A review of medicinal plants that exhibit anti-Toxoplasma effects.

Article Published Date : Jul 31, 2016
Authors : Ibrahim Al Nasr, Faiyaz Ahmed, Fawaz Pullishery, Saeed El-Ashram, Vardharajula Venkata Ramaiah
Study Type : Review
Additional Links
Andrographis, Tinospora and especially Zingiber officinale (ginger) have anti-parasitic activity against canine dirofilariasis (heartworm).

Article Published Date: Feb 01, 2010
Authors: L T Merawin, A K Arifah, R A Sani, M N Somchit, A Zuraini, S Ganabadi, Z A Zakaria
Study Type: In Vitro Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Dog Diseases : CK(3) : AC(2), Pets: Heartworm : CK(3) : AC(2)
Pharmacological Actions: Antiparasitic Agents : CK(68) : AC(40)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger (intravenous) exhibits antiparasitic activity against Dirofilaria immitis (heartworm).

Pubmed Data: J Helminthol. 1987 Sep;61(3):268-70. PMID: 3668217
Article Published Date: Sep 01, 1987
Authors: A Datta, N C Sukul
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Dog Diseases : CK(3) : AC(2), Pets: Heartworm : CK(3) : AC(2)
Pharmacological Actions: Antiparasitic Agents : CK(68) : AC(40)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger and garlic treatment significantly lowered the number of the blastocystis hominis parasites.

Pubmed Data: J Egypt Soc Parasitol. 2015 Apr ;45(1):93-100. PMID: 26012223
Article Published Date: Mar 31, 2015
Authors: Ekhlas H Abdel-Hafeez, Azza K Ahmad, Noha H Andelgelil, Manal Z M Abdellatif, Amany M Kamal, Rabie M Mohamed
Study Type: In Vitro Study
Additional Links
Ginger has an important anti-hydatic effect in vitro.

Article Published Date: Jul 31, 2016

Authors: Manel Amri, Chafia Touil-Boukouffa

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
Diseases: Hydatidosis : CK(1) : AC(1)
Pharmacological Actions: Antiparasitic Agents : CK(68) : AC(40), Immunomodulatory : CK(1287) : AC(358)

Antiproliferative (AC 11) (CK 16)

6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and programmed cell death in human breast cancer cells.

Article Published Date: Feb 19, 2010

Authors: Ya-Ling Hsu, Chung-Yi Chen, Ming-Feng Hou, Eing-Mei Tsai, Yuh-Jyh Jong, Chih-Hsing Hung, Po-Lin Kuo

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)
Diseases: Breast Cancer : CK(3592) : AC(1064)
Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075)

6-gingerol a component of ginger is extensively metabolized in H-1299 human lung cancer cells.

Article Published Date: Nov 13, 2012

Authors: Lishuang Lv, Huadong Chen, Dominique Soroka, Xiaoxin Chen, TinChung Leung,
A compound from ginger, 6]-gingerol, may be an effective agent in the treatment of skin cancer.

Pubmed Data: Chem Biol Interact. 2009 Sep 14;181(1):77-84. Epub 2009 May 27. PMID: 19481070

Article Published Date: Sep 14, 2009

Authors: Nidhi Nigam, Kulpreet Bhui, Sahdeo Prasad, Jasmine George, Yogeshwer Shukla

Study Type: In Vitro Study

Additional Links

- **Substances**: Catechols (CK:14) : AC(11), Ginger (CK:696) : AC(184)
- **Diseases**: Skin Cancer: Squamous Cell (CK:56) : AC(20)
- **Pharmacological Actions**: Antiproliferative (CK:2546) : AC(1685), Apoptotic (CK:2958) : AC(2075), Cell cycle arrest (CK:810) : AC(612)

A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type: Review

Additional Links

- **Substances**: Ginger (CK:696) : AC(184)
- **Diseases**: Cancers: All (CK:14773) : AC(4596), Inflammation (CK:3240) : AC(882), Liver Disease: Oxidative Stress (CK:9) : AC(5), Muscle Soreness (CK:25) : AC(5)
- **Therapeutic Actions**: Exercise (CK:1278) : AC(196)
- **Pharmacological Actions**: Anti-Inflammatory Agents (CK:4861) : AC(1630), Anti-metastatic: CK(634) : AC(414), Antioxidants (CK:7529) : AC(2682), Antiproliferative (CK:2546) : AC(1685), Apoptotic (CK:2958) : AC(2075), Gastrointestinal Agents (CK:268) : AC(41)

Curcuma rhizome, a main representant of Zingiberaceae family may be a promising natural source for active
compounds against malignant melanoma.

Article Published Date: Jan 11, 2015

Authors: Corina Danciu, Lavinia Vlaia, Florinela Fetea, Monica Hancianu, Dorina E Coricovac, Sorina A Ciurlea, Codruța M Șoica, Iosif Marincu, Vicentiu Vlaia, Cristina A Dehelean, Cristina Trandafirescu

Study Type: In Vitro Study

Substances: Curcuma Longa : CK(5) : AC(4), Ginger : CK(696) : AC(184), Polyphenols : CK(931) : AC(335)

Diseases: Malignant Melanoma : CK(34) : AC(16)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger exhibits anti-lung cancer properties.

Pubmed Data: J Med Food. 2010 Dec;13(6):1347-54. PMID: **21091248**

Article Published Date: Dec 01, 2010

Authors: Wirote Tuntiwechapikul, Thanachai Taka, Chonnipa Songsomboon, Navakoon Kaewtunjai, Arisa Imsumran, Luksana Makonkawkeyoon, Wilart Pompimon, T Randall Lee

Study Type: In Vitro Study

Substances: Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)

Diseases: Lung Cancer : CK(1043) : AC(393)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Telomerase Inhibitor : CK(55) : AC(35)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger extract inhibited cell proliferation and subsequently induced the autotic death of pancreatic cancer Panc-1 cells.

Article Published Date: Dec 31, 2014

Authors: Miho Akimoto, Mari Iizuka, Rie Kanematsu, Masato Yoshida, Keizo Takenaga

Study Type: Animal Study

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Pancreatic Cancer : CK(890) : AC(260)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Autophagy Up-regulation : CK(108) : AC(65)
Gingerol, a compound found within ginger, inhibits metastasis of human breast cancer cells.

Article Published Date : May 01, 2008
Authors : Hyun Sook Lee, Eun Young Seo, Nam E Kang, Woo Kyung Kim
Study Type : In Vitro Study
Additional Links
- **Substances** : Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)
- **Diseases** : Breast Cancer : CK(3592) : AC(1064), Cancer Metastasis : CK(442) : AC(206)
- **Pharmacological Actions** : Anti-metastatic : CK(634) : AC(414), Antiproliferative : CK(2546) : AC(1685), Matrix metalloproteinase-2 (MMP-2) inhibitor : CK(287) : AC(147)

Metabolites of [6]-shogoal can account for the bioactivity of the parent compound, and specifically triggers molecular pathways responsible for cancer cell death in a similar fashion.

Article Published Date : Dec 31, 2012
Authors : Yingdong Zhu, Renaud F Warin, Dominique N Soroka, Huadong Chen, Shengmin Sang
Study Type : In Vitro Study
Additional Links
- **Substances** : 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
- **Diseases** : Colon Cancer : CK(749) : AC(430), Lung Cancer : CK(1043) : AC(393)
- **Additional Keywords** : Metabolites : CK(64) : AC(20)

These results indicated that the effective components of Pinelliae extract for Purging Stomach-Fire in gastric cancer treatment were pinelliae and dried ginger.

Article Published Date : Dec 31, 2015
Authors : Xi-Ping Liu, Hai-Xia Ming, Pei-Qing Li
Study Type : In Vitro Study
Additional Links
- **Substances** : Ginger : CK(696) : AC(184), Pinellia : CK(2) : AC(1)
- **Diseases** : Gastric Cancer : CK(622) : AC(198)
- **Pharmacological Actions** : Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075)
Zingiber zerumbet (a member of the ginger family) contains compounds that inhibit histone deacetylase and exhibited growth inhibitory activity on various human tumor cell lines.

Article Published Date: Oct 01, 2008
Authors: Ill-Min Chung, Min-Young Kim, Won-Hwan Park, Hyung-In Moon
Study Type: In Vitro Study

Antiprotozoal Agents (AC 2) (CK 4)

Ginger and Turmeric extracts may represent effective and natural therapeutic alternatives in the treatment of giardiosis.

Article Published Date: Mar 15, 2016
Authors: Ahmad K Dyab, Doaa A Yones, Zedan Z Ibraheim, Tasneem M Hassan
Study Type: Animal Study

Ginger and cinnamon extracts had potential therapeutic effects on G. lamblia infection in albino rats as a promising alternative therapy to the commonly used
Antigiardial drugs.

Article Published Date: Sep 30, 2014

Authors: Abeer Mahmoud, Rasha Attia, Safaa Said, Zedan Ibrahim

Study Type: Animal Study

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Giardiasis : CK(29) : AC(8)

Pharmacological Actions: Antigiardial agents : CK(4) : AC(2), Antioxidants : CK(7529) : AC(2682), Antiprotozoal Agents : CK(47) : AC(19)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539), Significant Treatment Outcome : CK(24) : AC(4)

Antispasmodic (AC 1) (CK 1)

Ginger is useful in gastrointestinal disorders due to its spasmolytic activity.

Article Published Date: Oct 01, 2005

Authors: Muhammad Nabeel Ghayur, Anwarul Hassan Gilani

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Colic : CK(135) : AC(18), Diarrhea : CK(612) : AC(83), Dyspepsia : CK(254) : AC(29)

Pharmacological Actions: Antispasmodic : CK(132) : AC(32)

Antiviral Agents (AC 4) (CK 9)

Fresh ginger *(Zingiber officinale)* **has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines.**
Ginger contains compounds which inhibit rhinoviral activity.

Various extracts of ginger inhibit Cytomegalovirus, HSV-1, and HIV virus.

Zingiberaceae species (e.g. ginger) contain compounds that inhibit Epstein-Barr virus activation.
6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and programmed cell death in human breast cancer cells.

Article Published Date: Feb 19, 2010

Authors: Ya-Ling Hsu, Chung-Yi Chen, Ming-Feng Hou, Eing-Mei Tsai, Yuh-Jyh Jong, Chih-Hsing Hung, Po-Lin Kuo

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Breast Cancer : CK(3592) : AC(1064)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075)

A compound from ginger, 6]-gingerol, may be an effective agent in the treatment of skin cancer.

Pubmed Data: Chem Biol Interact. 2009 Sep 14;181(1):77-84. Epub 2009 May 27. PMID: 19481070

Article Published Date: Sep 14, 2009

Authors: Nidhi Nigam, Kulpreet Bhui, Sahdeo Prasad, Jasmine George, Yogeshwer Shukla

Study Type: In Vitro Study

Additional Links

Substances: Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)

Diseases: Skin Cancer: Squamous Cell : CK(56) : AC(20)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075), Cell cycle arrest : CK(810) : AC(612)

A review of the health promoting aspects of ginger in the treatment and prevention of diseases via
Immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013

Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid

Study Type: Review

Substances: Ginger: CK(696) : AC(184)

Diseases: Cancers: All: CK(14773) : AC(4596), Inflammation: CK(3240) : AC(882), Liver Disease: Oxidative Stress : CK(9) : AC(5), Muscle Soreness : CK(25) : AC(5)

Therapeutic Actions: Exercise : CK(1278) : AC(196)

Alzheimer's disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1-42) insult.

Article Published Date: Mar 31, 2007

Authors: Darrick S H L Kim, Jin-Yung Kim, Ye Sun Han

Study Type: In Vitro Study

Substances: Chinese Skullcap: CK(127) : AC(66), Ginger: CK(696) : AC(184), Ginkgo biloba: CK(798) : AC(162)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Neuroprotective Agents : CK(2360) : AC(1099)

Curcuma rhizome, a main representant of Zingiberaceae family may be a promising natural source for active compounds against malignant melanoma.

Article Published Date: Jan 11, 2015

Authors: Corina Danciu, Lavinia Vlaia, Florinela Fetea, Monica Hancianu, Dorina E Coricovac, Sorina A Ciurlea, Codruța M Șoica, Iosif Marincu, Vicentiu Vlaia, Cristina A Dehelean, Cristina Trandafirescu

Study Type: In Vitro Study

Substances: Curcuma Longa: CK(5) : AC(4), Ginger: CK(696) : AC(184), Polyphenols: CK(931) : AC(335)

Diseases: Malignant Melanoma: CK(34) : AC(16)
Ginger has significant anti-breast cancer properties.

Article Published Date: Dec 31, 2011

Authors: Ayman I Elkady, Osama A Abuzinadah, Nabih A Baeshen, Tarek R Rahmy

Study Type: Insect Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Breast Cancer : CK(3592) : AC(1064)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bax/Bcl2 Ratio: Decrease : CK(15) : AC(9), Bcl-2 protein down-regulation : CK(198) : AC(131)

Gingerol is a sensitizing agent which induces cell death of TRAIL resistant glioblastoma cells.

Article Published Date: Sep 14, 2014

Authors: Dae-Hee Lee, Dong-Wook Kim, Chang-Hwa Jung, Yong J Lee, Daeho Park

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Glioblastoma : CK(200) : AC(88)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bcl-2 protein down-regulation : CK(198) : AC(131), TRAIL sensitizer : CK(3) : AC(2)

Additional Keywords: Apoptosis Regulatory Proteins : CK(1) : AC(1)

In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.

Article Published Date: Dec 31, 2014

Authors: Sahdeo Prasad, Amit K Tyagi

Study Type: Review

Additional Links

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Cancers: All : CK(14773) : AC(4596), Gastrointestinal Cancer : CK(47) : AC(14)

Pharmacological Actions: Anti-metastatic : CK(634) : AC(414), Anticarcinogenic Agents : CK(1099)
In vivo and in vitro studies have established that phenolic components of ginger induce apoptosis and autophagy and inhibit metastasis.

Article Published Date: Jun 07, 2016

Authors: Indu Pal Kaur, Parneet Kaur Deol, Kanthi Kiran, Mahendra Bishnoi

Study Type: Review

Additional Links

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184)

Diseases: Cancer Metastasis : CK(442) : AC(206), Cancers: All : CK(14773) : AC(4596)

Pharmacological Actions: Anti-metastatic : CK(634) : AC(414), Apoptotic : CK(2958) : AC(2075), Autophagy Inhibitors : CK(26) : AC(13)

Kampo preparation Daikenchuto could be useful for cancer therapy.

Article Published Date: Apr 07, 2016

Authors: Takuya Nagata, Kazufumi Toume, Lv Xiao Long, Katsuhisa Hirano, Toru Watanabe, Shinichi Sekine, Tomoyuki Okumura, Katsuko Komatsu, Kazuhiro Tsukada

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Ginseng : CK(473) : AC(133)

Diseases: Breast Cancer : CK(3592) : AC(1064), Colon Cancer : CK(749) : AC(430), Esophageal Cancer : CK(506) : AC(85), Gastric Cancer : CK(622) : AC(198)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075)

Mango ginger treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly.

Article Published Date: May 03, 2015

Authors: Cheppail Ramachandran, Karl-W Quirin, Enrique A Escalon, Ivonne V Lollett, Steven J Melnick

Study Type: In Vitro Study

Additional Links
Metabolites of [6]-shogoal can account for the bioactivity of the parent compound, and specifically triggers molecular pathways responsible for cancer cell death in a similar fashion.

Article Published Date: Dec 31, 2012

Authors: Yingdong Zhu, Renaud F Warin, Dominique N Soroka, Huadong Chen, Shengmin Sang

Study Type: In Vitro Study

Additional Links
Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)
Diseases: Colon Cancer : CK(749) : AC(430), Lung Cancer : CK(1043) : AC(393)
Additional Keywords: Metabolites : CK(64) : AC(20)

The combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer.

Article Published Date: Dec 31, 2014

Authors: Lee Heng Wee, Noor Azian Morad, Goon Jo Aan, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: In Vitro Study

Additional Links
Substances: Ginger : CK(696) : AC(184), Honey : CK(504) : AC(103)
Diseases: Colon Cancer : CK(749) : AC(430)
Additional Keywords: Dose Response : CK(1056) : AC(408), Gene Expression Regulation : CK(431) : AC(214), Plant Extracts : CK(7645) : AC(2539)

The combination of ginger and gelam honey may be an effective chemopreventive and therapeutic strategy for
inducing the death of colon cancer cells.

Article Published Date: Dec 31, 2014

Authors: Analhuda Abdullah Tahir, Nur Fathiah Abdul Sani, Noor Azian Murad, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184), Honey : CK(504) : AC(103)

Diseases: Colon Cancer : CK(749) : AC(430), Colorectal Cancer : CK(1646) : AC(619), Inflammation : CK(3240) : AC(882)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Apoptotic : CK(2958) : AC(2075), Chemopreventive : CK(2835) : AC(787)

Additional Keywords: Gene Expression Regulation : CK(431) : AC(214), Natural Substance Synergy : CK(540) : AC(249)

These results indicated that the effective components of Pinelliae extract for Purging Stomach-Fire in gastric cancer treatment were pinelliae and dried ginger.

Article Published Date: Dec 31, 2015

Authors: Xi-Ping Liu, Hai-Xia Ming, Pei-Qing Li

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184), Pinellia : CK(2) : AC(1)

Diseases: Gastric Cancer : CK(622) : AC(198)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Apoptotic : CK(2958) : AC(2075)

This study showed the functions of shogaol as a sensitizing agent to induce cell death of TRAIL-resistant colon cancer cells.

Article Published Date: Jun 10, 2015

Authors: Jung Soon Hwang, Hai-Chon Lee, Sang Cheul Oh, Dae-Hee Lee, Ki Han Kwon

Study Type: In Vitro Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Colon Cancer : CK(749) : AC(430)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bcl-2 protein down-regulation : CK(198) : AC(131), Chemosensitizer : CK(394) : AC(286), Survivin Down-Regulation : CK(15) : AC(13)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Whole ginger extract reduces prostate tumor size by 56% in mice.

Article Published Date: Aug 18, 2011

Authors: Prasanthi Karna, Sharmeen Chagani, Sushma R Gundala, Padmashree C G Rida, Ghazia Asif, Vibhuti Sharma, Meenakshi V Gupta, Ritu Aneja

Study Type: Transgenic Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Prostate Cancer : CK(1499) : AC(438)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Cell cycle arrest : CK(810) : AC(612)

Zerumbone was able to induce apoptosis of pancreatic carcinoma cell lines

Article Published Date: Jan 01, 2012

Authors: Songyan Zhang, Qiaojing Liu, Yanju Liu, Hong Qiao, Yu Liu

Study Type: Human In Vitro

Additional Links

Substances: Ginger : CK(696) : AC(184), Zerumbone : CK(5) : AC(1)

Diseases: Pancreatic Cancer : CK(890) : AC(260)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Caspase-3 Activation : CK(91) : AC(66), P21 Activation : CK(72) : AC(47), Tumor Suppressor Protein p53 Upregulation : CK(293) : AC(202)

Additional Keywords: Zerumbone : CK(5) : AC(1)

Autophagy Inhibitors (AC 1) (CK 1)

In vivo and in vitro studies have established that phenolic components of ginger induce apoptosis and autophagy and inhibit metastasis.

Article Published Date: Jun 07, 2016

Authors: Indu Pal Kaur, Parneet Kaur Deol, Kanthi Kiran, Mahendra Bishnoi
Autophagy Up-regulation (AC 1) (CK 2)

Ginger extract inhibited cell proliferation and subsequently induced the autotic death of pancreatic cancer Panc-1 cells.

Article Published Date: Dec 31, 2014
Authors: Miho Akimoto, Mari Iizuka, Rie Kanematsu, Masato Yoshida, Keizo Takenaga

Bax/Bcl2 Ratio: Decrease (AC 1) (CK 2)

Ginger has significant anti-breast cancer properties.

Article Published Date: Dec 31, 2011
Authors: Ayman I Elkady, Osama A Abuzinadah, Nabih A Baeshen, Tarek R Rahmy

Study Type: Insect Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Breast Cancer : CK(3592) : AC(1064)

Bcl-2 protein down-regulation (AC 4) (CK 5)

Ginger has significant anti-breast cancer properties.

Article Published Date: Dec 31, 2011

Authors: Ayman I Elkady, Osama A Abuzinadah, Nabih A Baeshen, Tarek R Rahmy

Study Type: Insect Study

Additional Links

Substances: Ginger: CK(696): AC(184)

Diseases: Breast Cancer: CK(3592): AC(1064)

Gingerol is a sensitizing agent which induces cell death of TRAIL resistant glioblastoma cells.

Article Published Date: Sep 14, 2014

Authors: Dae-Hee Lee, Dong-Wook Kim, Chang-Hwa Jung, Yong J Lee, Daeho Park

Study Type: In Vitro Study

Additional Links

Substances: Ginger: CK(696): AC(184), Gingerol: CK(53): AC(31)

Diseases: Glioblastoma: CK(200): AC(88)

Additional Keywords: Apoptosis Regulatory Proteins: CK(1): AC(1)

Mango ginger treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly.
This study showed the functions of shogaol as a sensitizing agent to induce cell death of TRAIL-resistant colon cancer cells.

Calcium Channel Blockers (AC 1) (CK 2)

Ginger lowers blood pressure through blockade of voltage-dependent calcium channels.
Caspase-3 Activation (AC 1) (CK 5)

Zerumbone was able to induce apoptosis of pancreatic carcinoma cell lines

Article Published Date: Jan 01, 2012

Authors: Songyan Zhang, Qiaojing Liu, Yanju Liu, Hong Qiao, Yu Liu

Study Type: Human In Vitro

Additional Links

Substances: Ginger: CK(696): AC(184), Zerumbone: CK(5): AC(1)

Diseases: Pancreatic Cancer: CK(890): AC(260)

Additional Keywords: Zerumbone: CK(5): AC(1)

Cell cycle arrest (AC 3) (CK 4)

A compound from ginger, 6]-gingerol, may be an effective agent in the treatment of skin cancer.

Article Published Date: Sep 14, 2009
Hexahydrocurcumin has a cytotoxic effect against human colorectal cancer cells.

Article Published Date: Nov 01, 2011
Authors: Chung-Yi Chen, Woei-Ling Yang, Soong-Yu Kuo
Study Type: In Vitro Study
Additional Links
Substances: Curcumin: CK(4803): AC(2175), Ginger: CK(696): AC(184)
Diseases: Colorectal Cancer: CK(1646): AC(619)
Pharmacological Actions: Cell cycle arrest: CK(810): AC(612)

Whole ginger extract reduces prostate tumor size by 56% in mice.

Article Published Date: Aug 18, 2011
Authors: Prasanthi Karna, Sharmeen Chagani, Sushma R Gundala, Padmashree C G Rida, Ghazia Asif, Vibhuti Sharma, Meenakshi V Gupta, Ritu Aneja
Study Type: Transgenic Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Diseases: Prostate Cancer: CK(1499): AC(438)

Chemopreventive (AC 8) (CK 10)

"Ginger ingredients inhibit the development of diethylnitrosoamine induced premalignant phenotype in..."
Ginger (Zingiber officinale) prevents ethionine induced rat hepatocarcinogenesis.

In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.
Metabolites of [6]-shogoal can account for the bioactivity of the parent compound, and specifically triggers molecular pathways responsible for cancer cell death in a similar fashion.

Article Published Date: Dec 31, 2012
Authors: Yingdong Zhu, Renaud F Warin, Dominique N Soroka, Huadong Chen, Shengmin Sang
Study Type: In Vitro Study
Additional Links
Substances: 6-Shogaol: CK(38) : AC(26), Ginger: CK(696) : AC(184), Gingerol: CK(53) : AC(31)
Diseases: Colon Cancer: CK(749) : AC(430), Lung Cancer: CK(1043) : AC(393)
Additional Keywords: Metabolites: CK(64) : AC(20)

The combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer.

Article Published Date: Dec 31, 2014
Authors: Lee Heng Wee, Noor Azian Morad, Goon Jo Aan, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof
Study Type: In Vitro Study
Additional Links
Substances: Ginger: CK(696) : AC(184), Honey: CK(504) : AC(103)
Diseases: Colon Cancer: CK(749) : AC(430)
Additional Keywords: Dose Response: CK(1056) : AC(408), Gene Expression Regulation: CK(431) : AC(214), Plant Extracts: CK(7645) : AC(2539)

The combination of ginger and gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

Article Published Date: Dec 31, 2014
Authors: Analhuda Abdullah Tahir, Nur Fathiah Abdul Sani, Noor Azian Murad, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof
Study Type: In Vitro Study
Additional Links
The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming.

Article Published Date: Oct 17, 2015

Authors: Chong-Zhi Wang, Lian-Wen Qi, Chun-Su Yuan

Study Type: Review

Additional Links

Substances: 6-Shogaol : CK(38) : AC(26), Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Cancers: All : CK(14773) : AC(4596)

Pharmacological Actions: Chemopreventive : CK(2835) : AC(787)

This reviews the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer.

Article Published Date: Dec 31, 2015

Authors: Yue Zhou, Ya Li, Tong Zhou, Jie Zheng, Sha Li, Hua-Bin Li

Study Type: Review

Additional Links

Diseases: Liver Cancer : CK(1235) : AC(462)

Pharmacological Actions: Anti-metastatic : CK(634) : AC(414), Chemopreventive : CK(2835) : AC(787), Immunomodulatory : CK(1287) : AC(358)

Additional Keywords: Natural Substance/Drug Synergy : CK(352) : AC(142)
Ginger has therapeutic properties relevant to cancer treatment.

Pubmed Data: J BUON. 2011 Jul-Sep;16(3):414-24. PMID: 22006742

Article Published Date: Jul 01, 2011

Authors: M M Pereira, R Haniadka, P P Chacko, P L Palatty, M S Baliga

Study Type: Review

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596), Cancers: Drug Resistant : CK(352) : AC(223)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), Chemosensitizer : CK(394) : AC(286), Radioprotective : CK(756) : AC(262)

This study showed the functions of shogaol as a sensitizing agent to induce cell death of TRAIL-resistant colon cancer cells.

Article Published Date: Jun 10, 2015

Authors: Jung Soon Hwang, Hai-Chon Lee, Sang Cheul Oh, Dae-Hee Lee, Ki Han Kwon

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Colon Cancer : CK(749) : AC(430)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bcl-2 protein down-regulation : CK(198) : AC(131), Chemosensitizer : CK(394) : AC(286), Survivin Down-Regulation : CK(15) : AC(13)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Chemotherapeutic (AC 3) (CK 12)

In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.

Nausea severity and the number of vomiting episodes were significantly lower in the Ginger intervention group than in the control group.

This review indicates that ginger possesses multiple properties that could be beneficial in reducing chemotherapy induced nausea and vomiting

Cyclooxygenase 2 Inhibitors (AC 3) (CK 5)

A combination of ginger and peony root may prevent memory impairment in AD by inhibiting Aβ accumulation and inflammation in the brain.

Article Published Date: Nov 29, 2015
Authors: Soonmin Lim, Jin Gyu Choi, Minho Moon, Hyeon Geun Kim, Wonil Lee, Hyoung-Rok Bak, Hachang Sung, Chi Hye Park, Sun Yeou Kim, Myung Sook Oh
Study Type: Transgenic Animal Study
Additional Links
Diseases: Alzheimer’s Disease: CK(1292): AC(382), Brain Inflammation: CK(274): AC(145)
Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Ginger inhibits microglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009
Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)

Mango ginger treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly.
Cytoprotective (AC 1) (CK 2)

Turmeric and ginger were effective in eliminating arsenic from the body but could protect from possible damage caused by arsenic exposure.

Detoxifier (AC 1) (CK 2)
Turmeric and ginger were effective in eliminating arsenic from the body but could protect from possible damage caused by arsenic exposure.

Article Published Date: Aug 01, 2016

Authors: Suman Biswas, Chinmoy Maji, Prasanta Kumar Sarkar, Samar Sarkar, Abichal Chattopadhyay, Tapan Kumar Mandal

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Diseases: Arsenic Poisoning : CK(160) : AC(49)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Cytoprotective : CK(190) : AC(94), Detoxifier : CK(408) : AC(131)

Enzyme Inhibitors (AC 1) (CK 1)

An extract of Z. cassumunar and its constituent should be benefit to ameliorate inflammation and hypersensitiveness of airway epithelium.

Article Published Date: Feb 28, 2015

Authors: Orapan Poachanukoon, Ladda Meesuk, Napaporn Pattanacharoenchai, Paopanga Monthanapisut, Thaweephol Dechatiwongse Na Ayudhya, Sittichai Koontongkaew

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Allergic Airway Diseases : CK(69) : AC(25), Allergies : CK(703) : AC(132), Hypersensitivity: Respiratory : CK(11) : AC(2)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Enzyme Inhibitors : CK(473) : AC(251), Matrix metalloproteinase-9 (MMP-9) inhibitor : CK(212) : AC(128)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Enzyme Inhibitors: Pancreatic Lipase (AC 1) (CK 2)

Dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase.

Article Published Date: Sep 13, 2011

Authors: Usha Ns Prakash, Krishnapura Srinivasan

Study Type: Animal Study

Substances: Capsaicin : CK(129) : AC(55), Ginger : CK(696) : AC(184), Piperine : CK(114) : AC(60)

Diseases: Fat Malabsorption : CK(2) : AC(1), Indigestion: Fats : CK(2) : AC(1), Steatorrhea : CK(12) : AC(2)

Pharmacological Actions: Enzyme Inhibitors: Pancreatic Lipase : CK(12) : AC(2)

Food Preservatives (AC 1) (CK 1)

This study confirmed the potential of selected extracts of spices as effective natural food preservative in juices.

Article Published Date: Dec 31, 2015

Authors: Romika Dhiman, Neeraj Aggarwal, Kamal Rai Aneja, Manpreet Kaur

Study Type: In Vitro Study

Substances: Ashwagandha : CK(154) : AC(74), Ginger : CK(696) : AC(184), Gotu Kola : CK(50) : AC(20), Indian Gooseberry : CK(1) : AC(1), Mint : CK(380) : AC(60), Terminalia : CK(25) : AC(16), Turmeric : CK(5032) : AC(2348)

Diseases: Foodborne Pathogens: Prevention/Food Preservation : CK(19) : AC(18)

Pharmacological Actions: Antimicrobial : CK(293) : AC(128), Food Preservatives : CK(1) : AC(1)

Additional Keywords: Fruit Juice : CK(85) : AC(11), Plant Extracts : CK(7645) : AC(2539)
Galactogogue (AC 1) (CK 10)

Ginger is a promising natural galactagogue to improve breast milk volume in the immediate postpartum period without any notable side effect.

Article Published Date: Aug 08, 2016
Authors: Panwara Paritakul, Kasem Ruangrongmorakot, Wipada Laosooksathit, Maysita Suksamarnwong, Pawin Puapornpong
Study Type: Human Study
Substances: Ginger: CK(696) : AC(184)
Diseases: Breast Milk: Inadequate/Poor Quality: CK(110) : AC(10)
Pharmacological Actions: Galactogogue: CK(73) : AC(8)

Gastrointestinal Agents (AC 5) (CK 24)

A review of the health promoting aspects of ginger in the treatment and prevention of diseases via immunonutrition and anti-inflammatory responses.

Article Published Date: Mar 31, 2013
Authors: Nafiseh Shokri Mashhadi, Reza Ghiasvand, Gholamreza Askari, Mitra Hariri, Leila Darvishi, Mohammad Reza Mofid
Study Type: Review
Substances: Ginger: CK(696) : AC(184)
Therapeutic Actions: Exercise : CK(1278) : AC(196)
A standardized extract of ginger and artichoke significantly promoted gastric emptying in healthy volunteers.

Article Published Date: Dec 31, 2015
Authors: S Lazzini, W Polinelli, A Riva, P Morazzoni, E Bombardelli
Study Type: Human Study
Additional Links
Substances: Artichoke: CK(157) : AC(33), Ginger: CK(696) : AC(184)
Diseases: Delayed Gastric Emptying: CK(107) : AC(13)
Pharmacological Actions: Gastrointestinal Agents: CK(268) : AC(41)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

Ginger and Turmeric extracts may represent effective and natural therapeutic alternatives in the treatment of giardiosis.

Article Published Date: Mar 15, 2016
Authors: Ahmad K Dyab, Doaa A Yones, Zedan Z Ibraheim, Tasneem M Hassan
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696) : AC(184), Turmeric: CK(5032) : AC(2348)
Diseases: Giardiasis: CK(29) : AC(8)
Pharmacological Actions: Antiprotozoal Agents: CK(47) : AC(19), Gastrointestinal Agents: CK(268) : AC(41)
Additional Keywords: Dose Response: CK(1056) : AC(408)

Ginger and artichoke leaf extracts appears efficacious in the treatment of functional dyspepsia and could represent a promising and safe treatment strategy for this frequent disease.

Article Published Date: Dec 31, 2014
This review indicates that ginger possesses multiple properties that could be beneficial in reducing chemotherapy induced nausea and vomiting.

Authors : Wolfgang Marx, Karin Ried, Alexandra L McCarthy, Luis Vitetta, Avni Sali, Daniel McKavanagh, Elisabeth Isenring

Study Type : Review

Substances : Ginger : CK(696) : AC(184)
Diseases : Chemotherapy-Induced Nausea : CK(153) : AC(17)
Pharmacological Actions : Anti-Inflammatory Agents : CK(4861) : AC(1630), Chemotherapeutic : CK(397) : AC(152), Gastrointestinal Agents : CK(268) : AC(41)

Gastroprotective (AC 1) (CK 2)

Turmeric and ginger essential oils could reduce the gastric ulcers in rat stomachs.

Authors : Vijayasteltar B Liju, Kottarapat Jeena, Ramadasan Kuttan

Study Type : Animal Study

Substances : Ginger : CK(696) : AC(184), Turmeric: Volatile Oils : CK(1) : AC(1)
Diseases : Gastric Ulcer : CK(289) : AC(117)
Pharmacological Actions : Gastroprotective : CK(155) : AC(73)
Additional Keywords : Plant Oils : CK(55) : AC(24)
Glutathione Upregulation (AC 2) (CK 4)

Ginger protects against dichlorvos and lindane induced oxidative stress in rat brain.

Article Published Date: Jan 01, 2012
Authors: Poonam Sharma, Rambir Singh
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Diseases: Brain Damage: CK(93): AC(44)

Ginger protects against liver fibrosis.

Article Published Date: Jan 01, 2011
Authors: Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser
Study Type: Animal Study
Additional Links
Substances: Ginger: CK(696): AC(184)
Ginger and zinc mixture protected against malathion induced toxicity to the liver and kidney.

Article Published Date: Feb 28, 2015

Authors: Ahmed A Baiomy, Hossam F Attia, Mohamed M Soliman, Omar Makrum

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Zinc : CK(941) : AC(139)

Diseases: Chemical Exposure : CK(67) : AC(21), Chemically-Induced Liver Damage : CK(634) : AC(255), Kidney Damage: Chemically-Induced : CK(25) : AC(13)

Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594), Renoprotective : CK(572) : AC(254)

Additional Keywords: Malathion Toxicity : CK(2) : AC(1), Zinc Chloride : CK(2) : AC(1)

Ginger extracts can be considered as an effective, economical and safe extract to circumvent phosphamidon induced hepatotoxicity.

Pubmed Data: Indian J Exp Biol. 2015 Sep;53(9):574-84. PMID: 26548077

Article Published Date: Aug 31, 2015

Authors: Suprabhat Mukherjee, Niladri Mukherjee, Prasanta Saini, Priya Roy, Santi P Sinha Babu

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Chemically-Induced Liver Damage : CK(634) : AC(255)

Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594)

Ginger protects against acetaminophen-induced acute liver injury by enhancing liver antioxidant status.

Article Published Date: Nov 01, 2007

Authors: T A Ajith, U Hema, M S Aswathy

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Acetaminophen (Tylenol) Toxicity : CK(166) : AC(61)

Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594)
Ginger protects against bromobenzene-induced liver toxicity in male rats.

Article Published Date: Jul 01, 2009

Authors: A S El-Sharaky, A A Newairy, M A Kamel, S M Eweda

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Bromobenzene Toxicity : CK(4) : AC(2)

Pharmacological Actions: Hepatoprotective : CK(1387) : AC(594)

Histone deacetylase inhibitor (AC 1) (CK 1)

Zingiber zerumbet (a member of the ginger family) contains compounds that inhibit histone deacetylase and exhibited growth inhibitory activity on various human tumor cell lines.

Pubmed Data: Pharmazie. 2008 Oct;63(10):774-6. PMID: [18972844](#)

Article Published Date: Oct 01, 2008

Authors: Ill-Min Chung, Min-Young Kim, Won-Hwan Park, Hyung-In Moon

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Tumors : CK(203) : AC(119)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Histone deacetylase inhibitor : CK(48) : AC(37)

Hypoglycemic Agents (AC 6) (CK 28)
3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Article Published Date: Feb 09, 2015

Authors: Farzad Shidfar, Asadollah Rajab, Tayebeh Rahideh, Nafiseh Khandouzi, Sharieh Hosseini, Shahrzad Shidfar

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: C-Reactive Protein (CRP) : CK(20) : AC(2), Diabetes: Glycation/A1C : CK(210) : AC(33), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86), Hyperglycemia : CK(539) : AC(130), Insulin Resistance : CK(1683) : AC(346)

Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342), Insulin Sensitizers : CK(350) : AC(70)

Article Published Date: Dec 31, 2003

Authors: Sanjay P Akhani, Santosh L Vishwakarma, Ramesh K Goyal

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 1: Prevention : CK(255) : AC(50), Hypertension : CK(2984) : AC(406)

Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342), Insulin-releasing : CK(62) : AC(28)

Additional Keywords: Phytotherapy : CK(1216) : AC(221)

Problem Substances: Insulin : CK(149) : AC(23)

Dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.

Article Published Date: Jan 01, 2011

Authors: B O Iranloye, A P Arikawe, G Rotimi, A O Sogbade

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Insulin Resistance : CK(1683) : AC(346),
Ginger has anti-diabetic and lipid lowering properties in an animal model of type 1 diabetes.

Article Published Date : Oct 01, 2006
Authors : Zainab M Al-Amin, Martha Thomson, Khaled K Al-Qattan, Riitta Peltonen-Shalaby, Muslim Ali
Study Type : Animal Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Diabetes: Cardiovascular Illness : CK(700) : AC(107), Diabetes Mellitus: Type 1 : CK(1130) : AC(301)
Pharmacological Actions : Hypoglycemic Agents : CK(1446) : AC(342)
Additional Keywords : Plant Extracts : CK(7645) : AC(2539)

Green tea and ginger extracts have a significant hypoglycemic effect in diabetic rabbits.

Article Published Date : Apr 30, 2015
Authors : Ahmed Elkirdasy, Saad Shousha, Abdulmohsen H Alrohaimi, M Faiz Arshad
Study Type : Animal Study
Additional Links
Diseases : Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Hyperlipidemia : CK(670) : AC(155)
Pharmacological Actions : Hypoglycemic Agents : CK(1446) : AC(342), Hypolipidemic : CK(1288) : AC(265)
Additional Keywords : Plant Extracts : CK(7645) : AC(2539)

The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial.

Article Published Date : Jan 31, 2014
Authors : Hassan Mozaffari-Khosravi, Behrouz Talaei, Beman-Ali Jalali, Azadeh Najarzadeh,
Daily administration of 1,000 mg ginger reduces serum triglyceride concentration, which is a risk factor for cardiovascular disease in peritoneal dialysis patients.

Article Published Date: Oct 15, 2015

Authors: Hadi Tabibi, Hossein Imani, Shahnaz Aatabak, Iraj Najafi, Mehdi Hedayati, Leila Rahmani

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cardiovascular Disease: Prevention : CK(3250) : AC(433), Hemodialysis : CK(463) : AC(49), Triglycerides: Elevated : CK(718) : AC(117)

Pharmacological Actions: Hypolipidemic : CK(1288) : AC(265)

Additional Keywords: Risk Reduction : CK(6417) : AC(686)

Ginger has a protective effect against dyslipidemia in diabetic rats.

Pubmed Data: J Ethnopharmacol. 2005 Feb 28;97(2):227-30. PMID: 15707757

Article Published Date: Feb 28, 2005

Authors: Uma Bhandari, Raman Kanojia, K K Pillai

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cholesterol: LDL/HDL ratio : CK(484) : AC(61), Diabetes: Cardiovascular Illness : CK(700) : AC(107), Hyperlipidemia : CK(670) : AC(155)

Pharmacological Actions: Hypolipidemic : CK(1288) : AC(265)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)
Green tea and ginger extracts have a significant hypoglycemic effect in diabetic rabbits.

Pubmed Data: Acta Pol Pharm. 2015 May-Jun;72(3):497-506. PMID: [26642658](https://doi.org/10.1556/ACTAPOL.72.2015.3.18)

Article Published Date: Apr 30, 2015

Authors: Ahmed Elkirdasy, Saad Shousha, Abdulmohsen H Alrohaimi, M Faiz Arshad

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Green Tea : CK(1976) : AC(562)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Hyperlipidemia : CK(670) : AC(155)

Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342), Hypolipidemic : CK(1288) : AC(265)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Immunomodulatory (AC 3) (CK 4)

Ginger and constituent 6-gingerol could be used the prevention or alleviation of allergic rhinitis symptoms.

Pubmed Data: J Nutr Biochem. 2015 Sep 1. Epub 2015 Sep 1. PMID: [26403321](https://doi.org/10.1016/j.jnutbio.2015.07.011)

Article Published Date: Aug 31, 2015

Authors: Yoshiyuki Kawamoto, Yuki Ueno, Emiko Nakahashi, Momoko Obayashi, Kento Sugihara, Shanlou Qiao, Machiko Iida, Mayuko Y Kumasaka, Ichiro Yajima, Yuji Goto, Nobutaka Ohgami, Masashi Kato, Kozue Takeda

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Allergic Rhinitis : CK(392) : AC(52), Allergic Rhinitis: Prevention : CK(12) : AC(2)

Pharmacological Actions: Anti-Allergic Agents : CK(167) : AC(61), Immunomodulatory : CK(1287) : AC(358)

Ginger has an important anti-hydatic effect in vitro.

Article Published Date: Jul 31, 2016

Authors: Manel Amri, Chafia Touil-Boukoffa

Study Type: In Vitro Study

Additional Links
This reviews the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer.

Article Published Date: Dec 31, 2015
Authors: Yue Zhou, Ya Li, Tong Zhou, Jie Zheng, Sha Li, Hua-Bin Li
Study Type: Review
Additional Links
Diseases: Liver Cancer: CK(1235): AC(462)
Additional Keywords: Natural Substance/Drug Synergy: CK(352): AC(142)

Immunostimulatory (AC 1) (CK 2)

Dietary intake of C. longa and Z. officinale potentiates the non-specific host defences against opportunistic infections.

Article Published Date: Oct 31, 2012
Authors: Biswajit Chakraborty, Mahuya Sengupta
Study Type: Animal Study
Additional Links
Additional Keywords: Phytotherapy: CK(1216): AC(221), Plant Extracts: CK(7645): AC(2539)
"6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice."

Article Published Date: Jan 10, 2012

Authors: Debrup Chakraborty, Avinaba Mukherjee, Sourav Sikdar, Avijit Paul, Samrat Ghosh, Anisur Rahman Khuda-Bukhsh

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Arsenic Poisoning : CK(160) : AC(49), Insulin Resistance : CK(1683) : AC(346)

Pharmacological Actions: Insulin Sensitizers : CK(350) : AC(70)

3 months supplementation of ginger improved glycemic indices, TAC and PON-1 activity in patients with type 2 diabetes.

Pubmed Data: J Complement Integr Med. 2015 Feb 10. Epub 2015 Feb 10. PMID: [25719344](https://doi.org/10.1016/j.jcim.2014.12.004)

Article Published Date: Feb 09, 2015

Authors: Farzad Shidfar, Asadollah Rajab, Tayebeh Rahideh, Nafiseh Khandouzi, Sharieh Hosseini, Shahrzad Shidfar

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: C-Reactive Protein (CRP) : CK(20) : AC(2), Diabetes: Glycation/A1C : CK(210) : AC(33), Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Diabetes Mellitus: Type 2: Prevention : CK(651) : AC(86), Hyperglycemia : CK(539) : AC(130), Insulin Resistance : CK(1683) : AC(346)

Pharmacological Actions: Hypoglycemic Agents : CK(1446) : AC(342), Insulin Sensitizers : CK(350) : AC(70)

Dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.
Ginger has a beneficial effect on insulin resistance associated with fructose consumption.

Ginger has a beneficial effect on type 2 diabetics.

Insulin-releasing (AC 2) (CK 4)

Article Published Date: Dec 31, 2003

Authors: Sanjay P Akhani, Santosh L Vishwakarma, Ramesh K Goyal

Study Type: Animal Study

Substances: Ginger

Diseases: Diabetes Mellitus: Type 1: Prevention

Pharmacological Actions: Hypoglycemic Agents

Additional Keywords: Phytotherapy

Dietary garlic and especially ginger have anti-diabetic effects.

Article Published Date: Mar 01, 2008

Authors: Md Shahidul Islam, Haymie Choi

Study Type: Animal Study

Substances: Garlic, Ginger

Diseases: Diabetes Mellitus: Type 2

Pharmacological Actions: Insulin-releasing

Additional Keywords: Insulinotrophic

Interleukin-1 beta downregulation (AC 2) (CK 3)

Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats.

Pubmed Data: Rejuvenation Res. 2013 Apr;16(2):124-33. PMID: [23374025](https://pubmed.ncbi.nlm.nih.gov/23374025/)

Article Published Date: Mar 31, 2013
Z. officinale paste could be used as natural spice and a potent antitumour agent.

Article Published Date : Jul 18, 2016

Authors : Sundararaj Rubila, Thottiam Vasudevan Ranganathan, Kunnathur Murugesan Sakthivel

Study Type : In Vitro Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : Lymphoma: Dalton's : CK(3) : AC(2)

Pharmacological Actions : Anti-Inflammatory Agents : CK(4861) : AC(1630), Antioxidants : CK(7529) : AC(2682), Interleukin-1 beta downregulation : CK(478) : AC(205), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Interleukin-10 downregulation (AC 1) (CK 2)

Ginger and turmeric rhizomes decreased the anti-inflammatory cytokines in hypertensive rats.

Article Published Date : Mar 21, 2016

Authors : Ayodele Jacob Akinyemi, Gustavo Roberto Thomé, Vera Maria Morsch, Nathieli Bottari, Jucimara Baldissarelli, Lizielle Souza de Oliveira, Jeferson Ferraz Goularte, Adriane Belló-Klein, Thiago Duarte, Marta Duarte, Aline Augusti Boligon, Margareth Linde Athayde, Akintunde Afolabi Akindahunsi, Ganiyu Oboh, Maria Rosa Chitolina Schetinger

Study Type : Animal Study

Additional Links
Substances: Ginger: CK(696) : AC(184), Turmeric: CK(5032) : AC(2348)

Diseases: Hypertension: CK(2984) : AC(406), Inflammation: CK(3240) : AC(882)

Pharmacological Actions: Anti-Inflammatory Agents: CK(4861) : AC(1630), Interleukin-10 downregulation : CK(128) : AC(45), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Malonaldehyde (MDA) Down-Regulation (AC 2) (CK 4)

Dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity.

Article Published Date: Jan 01, 2011

Authors: B O Iranloye, A P Arikawe, G Rotimi, A O Sogbade

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696) : AC(184)

Diseases: Diabetes Mellitus: Type 2 : CK(3572) : AC(624), Insulin Resistance : CK(1683) : AC(346), Oxidative Stress : CK(3871) : AC(1382)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Hypoglycemic Agents : CK(1446) : AC(342), Insulin Sensitizers : CK(350) : AC(70), Malonaldehyde (MDA) Down-Regulation : CK(20) : AC(6)

Ginger protects against liver fibrosis.

Article Published Date: Jan 01, 2011

Authors: Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696) : AC(184)

Diseases: ALT: Elevated : CK(70) : AC(11), AST: Elevated : CK(46) : AC(6), Liver Fibrosis : CK(246) : AC(104)

Pharmacological Actions: Glutathione Upregulation : CK(152) : AC(53), Malonaldehyde (MDA) Down-Regulation : CK(20) : AC(6), Renoprotective : CK(572) : AC(254), Superoxide Dismutase Up-regulation : CK(530) : AC(174)
Malondialdehyde Down-regulation (AC 2) (CK 12)

Ginger supplementation with antitubercular treatment significantly lowered TNF alpha, ferritin and MDA concentrations.

Pubmed Data: J Complement Integr Med. 2016 Jun 1;13(2):201-6. PMID: 27089418

Article Published Date: May 31, 2016

Authors: Rashmi Anant Kulkarni, Ajit Ramesh Deshpande

Study Type: Human Study

Substances: Ginger

Diseases: Tuberculosis

Therapeutic Actions: Integrative Medicine

Pharmacological Actions: Anti-Inflammatory Agents, Antioxidants, Malondialdehyde Down-regulation, Tumor Necrosis Factor (TNF) Alpha Inhibitor

Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats.

Pubmed Data: Rejuvenation Res. 2013 Apr;16(2):124-33. PMID: 23374025

Article Published Date: Mar 31, 2013

Authors: Gao-Feng Zeng, Zhi-Yong Zhang, Li Lu, De-Qiang Xiao, Shao-Hui Zong, Jian-Ming He

Study Type: Animal Study

Pharmacological Actions: Interleukin-1 beta downregulation, Malondialdehyde Down-regulation, Neuroprotective Agents, NF-kappaB Inhibitor, Superoxide Dismutase Up-regulation

Additional Keywords: Plant Extracts

Matrix metalloproteinase-2 (MMP-2)
Gingerol, a compound found within ginger, inhibits metastasis of human breast cancer cells.

Article Published Date: May 01, 2008

Authors: Hyun Sook Lee, Eun Young Seo, Nam E Kang, Woo Kyung Kim

Study Type: In Vitro Study

Additional Links

Substances: Catechols: CK(14) : AC(11), Ginger: CK(696) : AC(184)

Diseases: Breast Cancer: CK(3592) : AC(1064), Cancer Metastasis: CK(442) : AC(206)

Pharmacological Actions: Anti-metastatic: CK(634) : AC(414), Antiproliferative: CK(2546) : AC(1685), Matrix metalloproteinase-2 (MMP-2) inhibitor: CK(287) : AC(147)

An extract of Z. cassumunar and its constituent should be benefit to ameliorate inflammation and hypersensitiveness of airway epithelium.

Article Published Date: Feb 28, 2015

Authors: Orapan Poachanukoon, Ladda Meesuk, Napaporn Pattanacharoenchai, Paopanga Monthanapisut, Thaweephol Dechatiwongse Na Ayudhya, Sittichai Koontongkaew

Study Type: In Vitro Study

Additional Links

Substances: Ginger: CK(696) : AC(184)

Diseases: Allergic Airway Diseases: CK(69) : AC(25), Allergies: CK(703) : AC(132), Hypersensitivity: Respiratory: CK(11) : AC(2)

Pharmacological Actions: Anti-Inflammatory Agents: CK(4861) : AC(1630), Enzyme Inhibitors: CK(473) : AC(251), Matrix metalloproteinase-9 (MMP-9) inhibitor: CK(212) : AC(128)

Additional Keywords: Plant Extracts: CK(7645) : AC(2539)
"Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats."

Article Published Date: Dec 01, 2008
Authors: Shafina Hanim Mohd Habib, Suzana Makpol, Noor Aini Abdul Hamid, Srijit Das, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof
Study Type: Animal Study

Ginger contains the compound zerumbone, which inhibits colon and lung carcinogenesis in mice.

Article Published Date: Jan 15, 2009
Authors: Mihye Kim, Shingo Miyamoto, Yumiko Yasui, Takeru Oyama, Akira Murakami, Takuji Tanaka
Study Type: Animal Study

Ginger inhibits micoglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009
Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park
Mango ginger treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly.

Pubmed Data: Phytother Res. 2015 May 4. Epub 2015 May 4. PMID: [25939344](https://doi.org/10.1002/ptr.5385)

Article Published Date: May 03, 2015

Authors: Cheppail Ramachandran, Karl-W Quirin, Enrique A Escalon, Ivonne V Lollett, Steven J Melnick

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Diseases: Rhabdomyosarcoma : CK(3) : AC(2)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Bcl-2 protein down-regulation : CK(198) : AC(131), Cyclooxygenase 2 Inhibitors : CK(464) : AC(272), NF-kappaB Inhibitor : CK(1114) : AC(694), Tumor Suppressor Protein p53 Upregulation : CK(293) : AC(202)

Additional Keywords: Gene Expression Regulation : CK(431) : AC(214), Natural Substance/Drug Synergy : CK(352) : AC(142), Significant Treatment Outcome : CK(3038) : AC(366)

Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats.

Pubmed Data: Rejuvenation Res. 2013 Apr ;16(2):124-33. PMID: [23374025](https://doi.org/10.1007/s11295-013-9303-2)

Article Published Date: Mar 31, 2013

Authors: Gao-Feng Zeng, Zhi-Yong Zhang, Li Lu, De-Qiang Xiao, Shao-Hui Zong, Jian-Ming He

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Pharmacological Actions: Interleukin-1 beta downregulation : CK(478) : AC(205), Malondialdehyde Down-regulation : CK(554) : AC(152), Neuroprotective Agents : CK(2360) : AC(1099), NF-kappaB Inhibitor : CK(1114) : AC(694), Superoxide Dismutase Up-regulation : CK(530) : AC(174)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Zingiber officinale attenuates retinal microvascular
changes in STZ-induced diabetic rats.

Article Published Date: Dec 31, 2015
Authors: Shirish Dongare, Suresh K Gupta, Rajani Mathur, Rohit Saxena, Sandeep Mathur, Renu Agarwal, Tapas C Nag, Sushma Srivastava, Pankaj Kumar
Study Type: Animal Study
Additional Links
Diseases: Diabetic Complications: CK(1563): AC(333)
Additional Keywords: Plant Extracts: CK(7645): AC(2539)

Neuroprotective Agents (AC 10) (CK 16)

6-gingerol may be useful in the prevention and treatment of alzheimer's disease.

Article Published Date: Mar 25, 2015
Authors: Gao-Feng Zeng, Shao-Hui Zong, Zhi-Yong Zhang, Song-Wen Fu, Ke-Ke Li, Ye Fang, Li Lu, De-Qiang Xiao
Study Type: Animal Study
Additional Links
Additional Keywords: Plant Extracts: CK(7645): AC(2539)

6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia.
Alzheimer's disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1-42) insult.

Pubmed Data: J Altern Complement Med. 2007 Apr;13(3):333-40. PMID: [17480132](#)

Study Type: In Vitro Study

Substances: Chinese Skullcap : CK(127) : AC(66), Ginger : CK(696) : AC(184), Ginkgo biloba : CK(798) : AC(162)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Neuroprotective Agents : CK(2360) : AC(1099)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger has a neuroprotective effect in diabetic rats.

Pubmed Data: Food Chem Toxicol. 2010 Dec 22. Epub 2010 Dec 22. PMID: [21184796](#)

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Diabetes: Cognitive Dysfunction : CK(40) : AC(17)

Pharmacological Actions: Neuroprotective Agents : CK(2360) : AC(1099)

Ginger mitigates damage and improves memory impairment in focal cerebral ischemia.

Pubmed Data: Evid Based Complement Alternat Med. 2011;2011:429505. Epub 2010 Dec 20. PMID: [21197427](#)
Ginger protects against dichlorvos and lindane induced oxidative stress in rat brain.

Article Published Date: Jan 01, 2012

Authors: Poonam Sharma, Rambir Singh

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Brain Damage : CK(93) : AC(44), Cerebral Ischemia : CK(229) : AC(77), Memory Disorders : CK(344) : AC(104)

Pharmacological Actions: Glutathione Upregulation : CK(152) : AC(53), Neuroprotective Agents : CK(2360) : AC(1099), Superoxide Dismutase Up-regulation : CK(530) : AC(174)

Problem Substances: Dichlorvos : CK(6) : AC(3), Lindane : CK(2) : AC(1)

Ginger root extract has a neuroprotective effect against monosodium glutamate-induced toxicity in male rats.

Article Published Date: Feb 01, 2009

Authors: Abeer M Waggas

Study Type: Animal Study

Substances: Ginger : CK(696) : AC(184)

Diseases: Excitotoxicity : CK(58) : AC(35)

Pharmacological Actions: Neuroprotective Agents : CK(2360) : AC(1099)

Long-term consumption of aromatic compounds from spices could be effective in the prevention of Alzheimer's disease.

Article Published Date: Mar 31, 2016
Nutraceuticals derived from such spices as turmeric, red pepper, black pepper, licorice, clove, ginger, garlic, coriander, and cinnamon target inflammatory pathways, thereby preventing neurodegenerative diseases.

Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats.
6-gingerol may be useful in the prevention and treatment of Alzheimer's disease.

Article Published Date: Mar 25, 2015
Authors: Gao-Feng Zeng, Shao-Hui Zong, Zhi-Yong Zhang, Song-Wen Fu, Ke-Ke Li, Ye Fang, Li Lu, De-Qiang Xiao
Study Type: Animal Study
Substances: Ginger: CK(696) : AC(184), Gingerol: CK(53) : AC(31)
Diseases: Alzheimer's Disease: CK(1292) : AC(382), Oxidative Stress: CK(3871) : AC(1382)
Pharmacological Actions: Anti-Inflammatory Agents: CK(4861) : AC(1630), Antioxidants: CK(7529) : AC(2682), Neuroprotective Agents: CK(2360) : AC(1099), Nitric Oxide Inhibitor: CK(223) : AC(108)
Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

Ginger inhibits micoglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009
Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park
Study Type: Animal Study
Substances: Ginger: CK(696) : AC(184)
Diseases: Brain: Microglial Activation: CK(82) : AC(53), Brain Inflammation: CK(274) : AC(145), Inflammation: CK(3240) : AC(882), Lipopolysaccharide-Induced Toxicity: CK(380) : AC(218), Neurodegenerative Diseases: CK(3376) : AC(850)

Ginger powder supplementation can reduce inflammatory markers in patients with knee osteoarthritis.

Nrf2 activation (AC 1) (CK 1)

Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

P21 Activation (AC 1) (CK 5)

Zerumbone was able to induce apoptosis of pancreatic carcinoma cell lines

Ginger contains the compound zerumbone, which may have chemopreventive activity through activating phase II drug metabolizing enzymes.

Authors: Yoshimasa Nakamura, Chiho Yoshida, Akira Murakami, Hajime Ohigashi, Toshihiko Osawa, Koji Uchida

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Cancers: All : CK(14773) : AC(4596)

Pharmacological Actions: Anticarcinogenic Agents : CK(1099) : AC(519), Antioxidants : CK(7529) : AC(2682), Phase II Detoxification Enzyme Inducer : CK(78) : AC(40)
and reduced tHcy and MDA levels.

Article Published Date: Apr 30, 2016

Authors: Abolfazl Akbari, Khadijeh Nasiri, Mojtaba Heydari, Seyed Hamdollah Mosavat

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696) : AC(184)

Diseases: Alcohol Toxicity: CK(337) : AC(125)

Pharmacological Actions: Prophylactic Agents: CK(129) : AC(31)

Additional Keywords: Plant Extracts: CK(7645) : AC(2539)

Prostaglandin Antagonists (AC 1) (CK 2)

Ginger inhibits micoglial cell activation associated with brain inflammation.

Article Published Date: Jun 01, 2009

Authors: Hyo Won Jung, Cheol-Ho Yoon, Kwon Moo Park, Hyung Soo Han, Yong-Ki Park

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696) : AC(184)

Diseases: Brain: Microglial Activation: CK(82) : AC(53), Brain Inflammation: CK(274) : AC(145), Inflammation: CK(3240) : AC(882), Lipopolysaccharide-Induced Toxicity: CK(380) : AC(218), Neurodegenerative Diseases: CK(3376) : AC(850)

Proton Pump Inhibitor (AC 1) (CK 2)
Ginger has a gastroprotective effect through its acid blocking and anti-Helicobacter pylori activity.

Pubmed Data: Evid Based Complement Alternat Med. 2009 Jul 1. PMID: 19570992
Article Published Date: Jul 01, 2009
Authors: Siddaraju M Nanjundaiah, Harish Nayaka Mysore Annaiah, Shylaja M Dharmesh
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Acid Reflux : CK(298) : AC(43), Gastroesophageal Reflux : CK(299) : AC(44), Helicobacter Pylori Infection : CK(506) : AC(104)
Pharmacological Actions: Anti-Bacterial Agents : CK(1367) : AC(475), Proton Pump Inhibitor : CK(36) : AC(13)
Additional Keywords: Natural Substances Versus Drugs : CK(1698) : AC(302), Prevacid (Lansoprazole) Alternatives : CK(6) : AC(3)

Radioprotective (AC 4) (CK 7)

Ginger exhibits behavioral radioprotection against radiation-induced taste aversion.

Article Published Date: Jun 01, 2006
Authors: Anupum Haksar, Ashok Sharma, Raman Chawla, Raj Kumar, Rajesh Arora, Surender Singh, J Prasad, M Gupta, R P Tripathi, M P Arora, F Islam, R K Sharma
Study Type: Animal Study
Additional Links
Substances: Ginger : CK(696) : AC(184)
Diseases: Radiation Induced Illness : CK(1046) : AC(264)
Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Radioprotective : CK(756) : AC(262)
Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Ginger has therapeutic properties relevant to cancer treatment.

Pubmed Data: J BUON. 2011 Jul-Sep;16(3):414-24. PMID: 22006742
Article Published Date: Jul 01, 2011
Ginger protects mice against radiation-induced lethality.

Article Published Date: Aug 01, 2004
Authors: Ganesh Jagetia, Manjeshwar Baliga, Ponemone Venkatesh

These results are supportive of use of ginger essential oil as a potential radioprotective compound.

Article Published Date: Dec 31, 2015
Authors: Kottarapat Jeena, Vijayasteltar B Liju, Viswanathan Ramanath, Ramadasan Kuttan

A compound in ginger known as 6-Gingerol prevents cisplatin-induced acute renal failure in rats.
A spice mixture containing garlic, ginger and nutmeg possesses both therapeutic and prophylactic effect against Cd-induced organ damage.

Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats.

Ginger and arabic gum may have therapeutic value in acute and chronic kidney failure.
Ginger and zinc mixture protected against malathion induced toxicity to the liver and kidney.

Article Published Date: Feb 28, 2015

Authors: Ahmed A Baiomy, Hossam F Attia, Mohamed M Soliman, Omar Makrum

Study Type: Animal Study

Additional Links

Substances:
- Ginger: CK(696) : AC(184)
- Zinc: CK(941) : AC(139)

Diseases:
- Chemical Exposure: CK(67) : AC(21)
- Chemically-Induced Liver Damage: CK(634) : AC(255)

Pharmacological Actions:
- Hepatoprotective: CK(1387) : AC(594)
- Renoprotective: CK(572) : AC(254)

Additional Keywords:
- Malathion Toxicity: CK(2) : AC(1)
- Zinc Chloride: CK(2) : AC(1)

Ginger has a protective effect against kidney damage associated with diabetes.

Pubmed Data: Chin J Physiol. 2011 Apr 30 ;54(2):79-86. PMID: [21789888]

Article Published Date: Apr 30, 2011

Authors: Shanmugam Kondeti Ramudu, Mallikarjuna Korivi, Nishanth Kesireddy, Li-Chen Lee, I-Shiung Cheng, Chia-Hua Kuo, Sathyavelu Reddy Kesireddy

Study Type: Animal Study

Additional Links

Substances: Ginger: CK(696) : AC(184)

Diseases:
- Diabetes: Kidney Function: CK(79) : AC(24)
- Kidney Damage: CK(193) : AC(64)

Pharmacological Actions:
- Renoprotective: CK(572) : AC(254)

Additional Keywords:
- Plant Extracts: CK(7645) : AC(2539)

Ginger protects against liver fibrosis.

Pubmed Data: Nutr Metab (Lond). 2011 ;8:40. Epub 2011 Jun 20. PMID: [21689445]

Article Published Date: Jan 01, 2011

Authors: Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser
Combined ginger and cinnamon have significant beneficial effects on the sperm viability, motility, and serum total testosterone, LH, FSH and serum anti-oxidants level.

Authors: Arash Khaki, Amir Afshin Khaki, Laleh Hajhosseini, Farhad Sadeghpour Golzar, Nava Ainehchi

Study Type: Animal Study

Additional Links

Substances: Cinnamon : CK(245) : AC(89), Ginger : CK(696) : AC(184)

Diseases: Diabetic Complications : CK(1563) : AC(333)

Pharmacological Actions: Antioxidants : CK(7529) : AC(2682), Spermatogenic : CK(12) : AC(2)
Ginger protects against liver fibrosis.

Pubmed Data : Nutr Metab (Lond). 2011 ;8:40. Epub 2011 Jun 20. PMID: 21689445

Article Published Date : Jan 01, 2011

Authors : Tarek K Motawi, Manal A Hamed, Manal H Shabana, Reem M Hashem, Asmaa F Aboul Naser

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Diseases : ALT: Elevated : CK(70) : AC(11), AST: Elevated : CK(46) : AC(6), Liver Fibrosis : CK(246) : AC(104)

Pharmacological Actions : Glutathione Upregulation : CK(152) : AC(53), Malonaldehyde (MDA) Down-Regulation : CK(20) : AC(6), Renoprotective : CK(572) : AC(254), Superoxide Dismutase Up-regulation : CK(530) : AC(174)

Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats.

Pubmed Data : Rejuvenation Res. 2013 Apr ;16(2):124-33. PMID: 23374025

Article Published Date : Mar 31, 2013

Authors : Gao-Feng Zeng, Zhi-Yong Zhang, Li Lu, De-Qiang Xiao, Shao-Hui Zong, Jian-Ming He

Study Type : Animal Study

Additional Links

Substances : Ginger : CK(696) : AC(184)

Additional Keywords : Plant Extracts : CK(7645) : AC(2539)
Survivin Down-Regulation (AC 1) (CK 1)

This study showed the functions of shogaol as a sensitizing agent to induce cell death of TRAIL-resistant colon cancer cells.

Article Published Date: Jun 10, 2015

Authors: Jung Soon Hwang, Hai-Chon Lee, Sang Cheul Oh, Dae-Hee Lee, Ki Han Kwon

Study Type: In Vitro Study

Substances: Ginger

Diseases: Colon Cancer

Pharmacological Actions: Apoptotic, Bcl-2 protein down-regulation, Chemosensitizer, Survivin Down-Regulation

Additional Keywords: Plant Extracts

TRAIL sensitizer (AC 1) (CK 1)

Gingerol is a sensitizing agent which induces cell death of TRAIL resistant glioblastoma cells.

Article Published Date: Sep 14, 2014

Authors: Dae-Hee Lee, Dong-Wook Kim, Chang-Hwa Jung, Yong J Lee, Daeho Park

Study Type: In Vitro Study

Substances: Ginger, Gingerol

Diseases: Glioblastoma

Pharmacological Actions: Apoptotic, Bcl-2 protein down-regulation, TRAIL sensitizer

Additional Keywords: Apoptosis Regulatory Proteins
Telomerase Inhibitor (AC 1) (CK 1)

Ginger exhibits anti-lung cancer properties.

Article Published Date: Dec 01, 2010

Authors: Wirote Tuntiwechapikul, Thanachai Taka, Chonnipa Songsomboon, Navakoon Kaewtunjai, Arisa Imsumran, Luksana Makonkawkeyoon, Wilart Pompimon, T Randall Lee

Study Type: In Vitro Study

Additional Links

Substances: Catechols : CK(14) : AC(11), Ginger : CK(696) : AC(184)

Diseases: Lung Cancer : CK(1043) : AC(393)

Pharmacological Actions: Antiproliferative : CK(2546) : AC(1685), Telomerase Inhibitor : CK(55) : AC(35)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Thermogenic (AC 1) (CK 10)

Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men.

Article Published Date: Sep 30, 2012

Authors: Muhammad S Mansour, Yu-Ming Ni, Amy L Roberts, Michael Kelleman, Arindam Roychoudhury, Marie-Pierre St-Onge

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Overweight : CK(3320) : AC(544), Weight Problems: Appetite : CK(162) : AC(22)

Pharmacological Actions: Thermogenic : CK(57) : AC(9)
"Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats."

Article Published Date: Dec 01, 2008

Authors: Shafina Hanim Mohd Habib, Suzana Makpol, Noor Aini Abdul Hamid, Srijit Das, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Liver Cancer: Prevention : CK(184) : AC(38)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

6-Gingerol, a compound found within ginger, inhibits inflammation.

Article Published Date: Apr 24, 2009

Authors: Tzung-Yan Lee, Ko-Chen Lee, Shih-Yuan Chen, Hen-Hong Chang

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Inflammation : CK(3240) : AC(882)

Pharmacological Actions: Anti-Inflammatory Agents : CK(4861) : AC(1630), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia.

Article Published Date: Dec 31, 2014
Curcumin, Resveratrol and Gingerol decrease prostate inflammation

Article Published Date : Jun 01, 2007

Authors : Larisa Nonn, David Duong, Donna M Peehl

Study Type : In Vitro Study

Substances : Curcumin : CK(4803) : AC(2175), Ginger : CK(696) : AC(184), Resveratrol : CK(1283) : AC(746)

Diseases : Prostate Cancer : CK(1499) : AC(438)

Pharmacological Actions : Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Dietary intake of C. longa and Z. officinale potentiates the non-specific host defences against opportunistic infections.

Article Published Date : Oct 31, 2012

Authors : Biswajit Chakraborty, Mahuya Sengupta

Study Type : Animal Study

Substances : Curcumin : CK(4803) : AC(2175), Curcuminoids : CK(4224) : AC(2161), Ginger : CK(696) : AC(184), Turmeric : CK(5032) : AC(2348)

Pharmacological Actions : Immunostimulatory : CK(265) : AC(60), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Additional Keywords : Phytotherapy : CK(1216) : AC(221), Plant Extracts : CK(7645) : AC(2539)

Ginger and turmeric rhizomes decreased the anti-inflammatory cytokines in hypertensive rats.

Ginger supplementation with antitubercular treatment significantly lowered TNF alpha, ferritin and MDA concentrations.

Pubmed Data : J Complement Integr Med. 2016 Jun 1 ;13(2):201-6. PMID: 27089418
Article Published Date : May 31, 2016
Authors : Rashmi Anant Kulkarni, Ajit Ramesh Deshpande
Study Type : Human Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Tuberculosis : CK(312) : AC(54)
Therapeutic Actions : Integrative Medicine : CK(312) : AC(45)

Z. officinale paste could be used as natural spice and a potent antitumour agent.

Article Published Date : Jul 18, 2016
Authors : Sundararaj Rubila, Thottiam Vasudevan Ranganathan, Kunnathur Murugesan Sakthivel
Study Type : In Vitro Study
Additional Links
Substances : Ginger : CK(696) : AC(184)
Diseases : Lymphoma: Dalton’s : CK(3) : AC(2)
Pharmacological Actions : Anti-Inflammatory Agents : CK(4861) : AC(1630), Antioxidants : CK(7529) : AC(2682), Interleukin-1 beta downregulation : CK(478) : AC(205), Tumor Necrosis Factor (TNF) Alpha Inhibitor : CK(1823) : AC(669)

Zingiber officinale attenuates retinal microvascular
Mango ginger treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly.

Zerumbone was able to induce apoptosis of pancreatic
carcinoma cell lines

Article Published Date: Jan 01, 2012

Authors: Songyan Zhang, Qiaojing Liu, Yanju Liu, Hong Qiao, Yu Liu

Study Type: Human In Vitro

Additional Links

Substances: Ginger : CK(696) : AC(184), Zerumbone : CK(5) : AC(1)

Diseases: Pancreatic Cancer : CK(890) : AC(260)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Caspase-3 Activation : CK(91) : AC(66), P21 Activation : CK(72) : AC(47), Tumor Suppressor Protein p53 Upregulation : CK(293) : AC(202)

Additional Keywords: Zerumbone : CK(5) : AC(1)

Vascular Endothelial Growth Factor Inhibitors (AC 1) (CK 2)

Zingiber officinale attenuates retinal microvascular changes in STZ-induced diabetic rats.

Article Published Date: Dec 31, 2015

Authors: Shirish Dongare, Suresh K Gupta, Rajani Mathur, Rohit Saxena, Sandeep Mathur, Renu Agarwal, Tapas C Nag, Sushma Srivastava, Pankaj Kumar

Study Type: Animal Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Gingerol : CK(53) : AC(31)

Diseases: Diabetic Complications : CK(1563) : AC(333)

Additional Keywords: Plant Extracts : CK(7645) : AC(2539)

Vasopressin Inhibitor (AC 1) (CK 10)
Ginger has a therapeutic effect on motion sickness.

Pubmed Data: Nutr Cancer. 2007;58(1):60-5. PMID: [12576305](https://pubmed.ncbi.nlm.nih.gov/12576305/)

Article Published Date: Jan 01, 2007

Authors: Han-Chung Lien, Wei Ming Sun, Yen-Hsueh Chen, Hyerang Kim, William Hasler, Chung Owyang

Study Type: Human Study

Additional Links

Substances: Ginger : CK(696) : AC(184)

Diseases: Motion Sickness : CK(10) : AC(1)

Pharmacological Actions: Vasopressin Inhibitor : CK(12) : AC(2)

Wnt/β-catenin signaling pathway modulation (AC 1) (CK 1)

The combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer.

Article Published Date: Dec 31, 2014

Authors: Lee Heng Wee, Noor Azian Morad, Goon Jo Aan, Suzana Makpol, Wan Zurinah Wan Ngah, Yasmin Anum Mohd Yusof

Study Type: In Vitro Study

Additional Links

Substances: Ginger : CK(696) : AC(184), Honey : CK(504) : AC(103)

Diseases: Colon Cancer : CK(749) : AC(430)

Pharmacological Actions: Apoptotic : CK(2958) : AC(2075), Chemopreventive : CK(2835) : AC(787), Wnt/β-catenin signaling pathway modulation : CK(36) : AC(24)

Additional Keywords: Dose Response : CK(1056) : AC(408), Gene Expression Regulation : CK(431) : AC(214), Plant Extracts : CK(7645) : AC(2539)

β-secretase Inhibitor (AC 1) (CK 1)
Long-term consumption of aromatic compounds from spices could be effective in the prevention of Alzheimer's disease.

Article Published Date: Mar 31, 2016

Authors: Shinichi Matsumura, Kazuya Murata, Yuri Yoshioka, Hideaki Matsuda

Study Type: In Vitro Study

Additional Links

Diseases: Alzheimer's Disease: CK(1292): AC(382)

This document is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2016 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.