These results supported the potential use of EGCG as a natural agent to prevent AFB1 contamination in fermentation industry. - GreenMedInfo Summary
EGCG Alleviates Oxidative Stress and Inhibits Aflatoxin BBiosynthesis via MAPK Signaling Pathway.
Toxins (Basel). 2021 Sep 30 ;13(10). Epub 2021 Sep 30. PMID: 34678986
Dan Xu
Aflatoxin biosynthesis has established a connection with oxidative stress, suggesting a prevention strategy for aflatoxin contamination via reactive oxygen species (ROS) removal. Epigallocatechin gallate (EGCG) is one of the most active and the richest molecules in green tea with well-known antioxidant effects. Here, we found EGCG could inhibit aflatoxin B(AFB) biosynthesis without affecting mycelial growth in, and the arrest occurred before the synthesis of toxin intermediate metabolites. Further RNA-seq analysis indicated that multiple genes involved in AFBbiosynthesis were down-regulated. In addition, EGCG exposure facilitated the significantly decreased expression of AtfA which is a bZIP (basic leucine zipper) transcription factor mediating oxidative stress. Notably, KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that the MAPK signaling pathway target transcription factor was down-regulated by 1 mg/mL EGCG. Further Western blot analysis showed 1 mg/mL EGCG could decrease the levels of phosphorylated SakA in both the cytoplasm and nucleus. Taken together, these data evidently supported that EGCG inhibited AFBbiosynthesis and alleviated oxidative stress via MAPK signaling pathway. Finally, we evaluated AFBcontamination in soy sauce fermentation and found that EGCG could completely control AFBcontamination at 8 mg/mL. Conclusively, our results supported the potential use of EGCG as a natural agent to prevent AFBcontamination in fermentation industry.