Abstract Title:

Reactive oxygen species mediate oridonin-induced apoptosis through DNA damage response and activation of JNK pathway in diffuse large B cell lymphoma.

Abstract Source:

Leuk Lymphoma. 2016 ;57(4):888-98. Epub 2015 Nov 1. PMID: 26415087

Abstract Author(s):

Zi-Zhen Xu, Wan-Bin Fu, Zhen Jin, Pei Guo, Wen-Fang Wang, Jun-Min Li

Article Affiliation:

Zi-Zhen Xu


This study investigated the cytotoxic effect of oridonin (ORI), a diterpenoid isolated from Rabdosia rubescens, in human diffuse large B cell lymphoma (DLBCL) in vitro and in vivo and the potential molecular mechanisms for ORI-induced cell apoptosis. ORI treatment caused reactive oxygen species (ROS)-mediated oxidative DNA damage response (DDR) and the c-Jun N-terminal kinase (JNK) pathway activation, leading to an induction of intrinsic apoptosis. ROS abolition blocked ORI-induced apoptosis and attenuated the expression of phospho-histone H2AX and phospho-JNK, indicating that ROS-mediated DNA damage and JNK pathway activation were involved in ORI-induced apoptosis. The systemic administration of ORI suppressed the growth of human DLBCL xenografts without showing significant toxicity. These findings suggest that ORI may have promising therapeutic application in DLBCL.

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.