Abstract Title:

Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice.

Abstract Source:

Biochim Biophys Acta. 2012 Jul ;1820(7):894-9. Epub 2012 Apr 5. PMID: 22503922

Abstract Author(s):

Jorge Joven, Eugenia Espinel, Anna Rull, Gerard Aragonès, Esther Rodríguez-Gallego, Jordi Camps, Vicente Micol, María Herranz-López, Javier A Menéndez, Isabel Borrás, Antonio Segura-Carretero, Carlos Alonso-Villaverde, Raúl Beltrán-Debón

Article Affiliation:

Jorge Joven


BACKGROUND: MicroRNAs have the potential for clinical application. Probable modulation by plant-derived polyphenols might open preventive measures using simple dietary recommendations.

METHODS: We assessed the ability of continuous administration of high-dose polyphenols to modulate hepatic metabolism and microRNA expression in diet-induced fatty liver disease in commercially available hyperlipidemic mice using well-established and accepted procedures that included the development of new antibodies against modified quercetin.

RESULTS: Weight gain, liver steatosis, changes in the composition of liver tissue, and insulin resistance were all attenuated by the continuous administration of polyphenols. We also demonstrated that metabolites of polyphenols accumulate in immune cells and at the surface of hepatic lipid droplets indicating not only bioavailability but a direct likely action on liver cells. The addition of polyphenols also resulted in changes in the expression of miR-103, miR-107 and miR-122.

CONCLUSIONS: Polyphenols prevent fatty liver disease under these conditions. The differential expression of mRNAs and miRNAs was also associated with changes in lipid and glucose metabolism and with the activation of 5'-adenosine monophosphate-activated protein kinase, effects that are not necessarily connected. miRNAs function via different mechanisms and miRNA-mRNA interactions are difficult to ascertain with current knowledge. Further, cell models usually elicit contradictory results with those obtained in animal models.

GENERAL SIGNIFICANCE: Our data indicate that plant-derived polyphenols should be tested in humans as preventive rather than therapeutic agents in the regulation of hepatic fatty acid utilization. A multi-faceted mechanism of action is likely and the regulation of liver miRNA expression blaze new trails in further research.

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.