Article Publish Status: FREE
Abstract Title:

Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer's beta-amyloid fibrils in vitro.

Abstract Source:

J Neurochem. 2002 May ;81(3):434-40. PMID: 12065652

Abstract Author(s):

Kenjiro Ono, Kazuhiro Hasegawa, Yuji Yoshiike, Akihiko Takashima, Masahito Yamada, Hironobu Naiki

Article Affiliation:

Kenjiro Ono


Inhibition of the accumulation of amyloid beta-peptide (Abeta) and the formation of beta-amyloid fibrils (fAbeta) from Abeta, as well as the degradation of pre-formed fAbeta in the CNS would be attractive therapeutic objectives for the treatment of Alzheimer's disease (AD). We previously reported that nordihydroguaiaretic acid (NDGA) inhibited fAbeta formation from Abeta(1-40) and Abeta(1-42) dose-dependently in the range of 10-30 micromin vitro. Utilizing fluorescence spectroscopic analysis with thioflavin T and electron microscopic study, we show here that NDGA dose-dependently breaks down fAbeta(1-40) and fAbeta(1-42) within a few hours at pH 7.5 at 37 degrees C. At 4 h, the fluorescence of fAbeta(1-40) and fAbeta(1-42) incubated with 50 microm NDGA was 5% and 10% of the initial fluorescence, respectively. The activity of NDGA to break down these fAbetas was observed even at a low concentration of 0.1 microm. At 1 h, many short, sheared fibrils were observed in the mixture incubated with 50 microm NDGA, and at 4 h, the number of fibrils reduced markedly, and small amorphous aggregates were observed. We next compared the activity of NDGA to break down fAbeta(1-40) and fAbeta(1-42), with other molecules reported to inhibit fAbeta formation from Abeta and/or to degrade pre-formed fAbeta both in vivo and in vitro. At a concentration of 50 microm, the overall activity of the molecules examined in this study was in the order of: NDGA>rifampicin = tetracycline>poly(vinylsulfonic acid, sodium salt) = 1,3-propanedisulfonic acid, disodium salt>beta-sheet breaker peptide (iAbeta5). In cell culture experiments, fAbeta disrupted by NDGA were less toxic than intact fAbeta, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Although the mechanisms by which NDGA inhibits fAbeta formation from Abeta, as well as breaking down pre-formed fAbetain vitro, are still unclear, NDGA could be a key molecule for the development of therapeutics for AD.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.