Abstract Title:

Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis.

Abstract Source:

Immunol Res. 2018 Jun 7. Epub 2018 Jun 7. PMID: 29882035

Abstract Author(s):

Maryam Azimi, Mojdeh Ghabaee, Abdorreza Naser Moghadasi, Farshid Noorbakhsh, Maryam Izad

Article Affiliation:

Maryam Azimi


Multiple sclerosis (MS) is an autoimmune disease which is characterized by neuroaxonal degeneration in the central nervous system. Impaired function of regulatory T cells (Tregs) is believed to be an underlying pathogenic mechanism in MS. Tregs is able to release exosomes, which contain a considerable amount of protein and RNA. Exosomes are capable of transporting their content to other cells where the released content exerts biological functions. Here, we investigated whether Tregs exosomes of RRMS patients or healthy controls might regulate the proliferation or survival of T lymphocytes. Regulatory T cells derived from MS patients or healthy controls were cultured for 3 days and exosomes were purified from supernatants. Treg-derived exosomes were co-cultured with conventional T cells (Tconv). The percentages of Tconv proliferation and apoptosis were measured. Our findings showed that the percentage of proliferation suppression induced by exosomes in patients compared to healthy controls was 8.04 ± 1.17 and 12.5 ± 1.22, respectively, p value = 0.035. Moreover, the rate of Tconv apoptosis induced by exosome of MS patient was less than healthy controls (0.68 ± 0.12 vs. 1.29 ± 0.13; p value = 0.015). Overall, Treg-derived exosomes from MS patients and healthy controls suppressed the proliferation and induced apoptosis in Tconv. However, the effect of MS-derived exosomes was significantly less than healthy controls. Our results point to an alternative Treg inhibitory mechanism which might be important in immunopathogenesis of MS. Although, the cause of the exosomal defect in MS patients is unclear, manipulation of patients' Treg-derived exosomes to restore their suppressive activity might be considered as a potential therapeutic approach. Graphical abstract ᅟ.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.