Article Publish Status: FREE
Abstract Title:

Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization.

Abstract Source:

Redox Biol. 2022 Mar 18 ;52:102297. Epub 2022 Mar 18. PMID: 35334248

Abstract Author(s):

Guoqing Wang, Xingran Li, Na Li, Xiaotang Wang, Siyuan He, Wanqian Li, Wei Fan, Ruonan Li, Jiangyi Liu, Shengping Hou

Article Affiliation:

Guoqing Wang


Uveitis causes blindness and critical visual impairment in people of all ages, and retinal microglia participate in uveitis progression. Unfortunately, effective treatment is deficient. Icariin (ICA) is a bioactive monomer derived from Epimedium. However, the role of ICA in uveitis remains elusive. Our study indicated that ICA alleviated intraocular inflammation in vivo. Further results showed the proinflammatory M1 microglia could be transferred to anti-inflammatory M2 microglia by ICA in the retina and HMC3 cells. However, the direct pharmacological target of ICA is unknown, to this end, proteome microarrays and molecular simulations were used to identify the molecular targets of ICA. Data showed that ICA binds to peroxiredoxin-3 (PRDX3), increasing PRDX3 protein expression in both a time- and a concentration-dependent manner and promoting the subsequent elimination of HO. In addition, GPX4/SLC7A11/ACSL4 pathways were activated accompanied by PRDX3 activation. Functional tests demonstrated that ICA-derived protection is afforded through targeting PRDX3. First, ICA-shifted microglial M1/M2 phenotypic polarization was no longer detected by blocking PRDX3 both in vivo and in vitro. Next, ICA-activated GPX4/SLC7A11/ACSL4 pathways and downregulated HOproduction were also reversed via inhibiting PRDX3 both in vivo and in vitro. Finally, ICA-elicited positive effects on intraocular inflammation were eliminated in PRDX3-deficient retina from experimental autoimmune uveitis (EAU) mice. Taking together, ICA-derived PRDX3 activation has therapeutic potential for uveitis, which might be associated with modulating microglial M1/M2 phenotypic polarization.

Study Type : Animal Study, In Vitro Study
Additional Links

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.