Abstract Title:

Ginsenoside Rg1 Prevents Chemotherapy-Induced Cognitive Impairment: Associations with Microglia-Mediated Cytokines, Neuroinflammation, and Neuroplasticity.

Abstract Source:

Mol Neurobiol. 2019 Jan 18. Epub 2019 Jan 18. PMID: 30659419

Abstract Author(s):

Dong-Dong Shi, Yu-Hua Huang, Cora Sau Wan Lai, Celia M Dong, Leon C Ho, Xiao-Yang Li, Ed X Wu, Qi Li, Xiao-Min Wang, Yong-Jun Chen, Sookja Kim Chung, Zhang-Jin Zhang

Article Affiliation:

Dong-Dong Shi


Chemotherapy-induced cognitive impairment, also known as"chemobrain,"is a common side effect. The purpose of this study was to examine whether ginsenoside Rg1, a ginseng-derived compound, could prevent chemobrain and its underlying mechanisms. A mouse model of chemobrain was developed with three injections of docetaxel, adriamycin, and cyclophosphamide (DAC) in combination at a 2-day interval. Rg1 (5 and 10 mg/kg daily) was given 1 week prior to DAC regimen for 3 weeks. An amount of 10 mg/kg Rg1 significantly improved chemobrain-like behavior in water maze test. In vivo neuroimaging revealed that Rg1 co-treatment reversed DAC-induced decreases in prefrontal and hippocampal neuronal activity and ameliorated cortical neuronal dendritic spine elimination. It normalized DAC-caused abnormalities in the expression of multiple neuroplasticity biomarkers in the two brain regions. Rg1 suppressed DAC-induced elevation of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6(IL-6), but increased levels of the anti-inflammatory cytokines IL-4 and IL-10 in multiple sera and brain tissues. Rg1 also modulated cytokine mediators and inhibited DAC-induced microglial polarization from M2 to M1 phenotypes. In in vitro experiments, while impaired viability of PC12 neuroblasticcells and hyperactivation of BV-2 microglial cells, a model of neuroinflammation, were observed in the presence of DAC, Rg1 co-treatment strikingly reduced DAC's neurotoxic effects and neuroinflammatory response. These results indicate that Rg1 exerts its anti-chemobrain effect in an association with the inhibition of neuroinflammation by modulating microglia-mediated cytokines and the related upstream mediators, protecting neuronal activity and promoting neuroplasticity in particular brain regions associated with cognition processing.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.