Article Publish Status: FREE
Abstract Title:

Eugenol alleviates transmissible gastroenteritis virus-induced intestinal epithelial injury by regulating NF-κB signaling pathway.

Abstract Source:

Front Immunol. 2022 ;13:921613. Epub 2022 Aug 16. PMID: 36052062

Abstract Author(s):

Kang Wang, Daiwen Chen, Bing Yu, Jun He, Xiangbing Mao, Zhiqing Huang, Hui Yan, Aimin Wu, Yuheng Luo, Ping Zheng, Jie Yu, Junqiu Luo

Article Affiliation:

Kang Wang


Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatoryand; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration () but also significantly decreased serum inflammatory cytokine concentration () in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression ofmRNA and the phosphorylation level ofprotein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein () and mRNA expression levels of nutrient transporter-related genes (and) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression ofandin IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression ofand, which may be related to the inhibition ofsignaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.