Article Publish Status: FREE
Abstract Title:

Beneficial effects of cocoa, coffee, green tea, and garcinia complex supplement on diet induced obesity in rats.

Abstract Source:

BMC Complement Altern Med. 2016 ;16(1):100. Epub 2016 Mar 12. PMID: 26968378

Abstract Author(s):

Chi-Chang Huang, Yu-Tang Tung, Wen-Ching Huang, Yi-Ming Chen, Yi-Ju Hsu, Mei-Chich Hsu

Article Affiliation:

Chi-Chang Huang


BACKGROUND: Cocoa, coffee, green tea and garcinia contain large amounts of polyphenols. Polyphenols are well-known phytochemicals and found in plants, and have modulated physiological and molecular pathways that are involved in energy metabolism, adiposity, and obesity.

METHODS: To evaluate the obesity-lowering effect of a combined extract (comprising cocoa, coffee, green tea and garcinia; CCGG) in high-energy diet (HED)-induced obese rats. Male Sprague Dawley rats (8 weeks old) were randomly divided into four groups (n = 12 per group): normal diet with vehicle treatment (Control), and HED to receive vehicle or CCGG by oral gavage at 129, 258, or 517 mg/kg/day for 4 weeks, designated the HED, 0.5X, 1X and 1X groups, respectively.

RESULTS: HED induced macrovesicular fat in the liver and the formation of adipose tissues, and significantly increased the levels of serum free fatty acids (FFA), triacylglycerol (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and LDL-C/HDL-C, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and ketone bodies in serum, and hepatic TG and TC levels, and decreased the levels of high density lipoprotein cholesterol (HDL-C) in serum and lipase activity in fat tissues. Treatment with CCGG could significantly decrease the levels of FFA, TG, TC, LDL-C, and LDL-C/HDL-C, AST, ALT, and ketone bodies in serum, and hepatic TG and TC contents, and increase the levels of HDL-C in serum and lipase activity in fat tissues compared to the HED group. Liver histopathology also showed that CCGG could significantly reduce the incidence of liver lesions.

CONCLUSION: These results suggested that CCGG stimulated lipid metabolism in HED-induced obese rats, which is attributable to fat mobilization from adipose tissue.

Print Options

Key Research Topics

Sayer Ji
Founder of

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022, Journal Articles copyright of original owners, MeSH copyright NLM.