Abstract Title:

Bacosides Encapsulated in Lactoferrin Conjugated PEG-PLA-PCL-OH Based Polymersomes Act as Epigenetic Modulator in Chemically Induced Amnesia.

Abstract Source:

Neurochem Res. 2020 Apr ;45(4):796-808. Epub 2020 Jan 20. PMID: 31960226

Abstract Author(s):

Kritika Goyal, Arpita Konar, Ashish Kumar, Veena Koul

Article Affiliation:

Kritika Goyal


The present study demonstrates the epigenetic mechanisms underlying the effect of Bacoside rich extract of Bacopa monniera-a nootropic herb, on scopolamine treated amnesic mice conferred via chromatin modifying enzymes. The focus of the work was to elucidate the modulation of the chromatin modifying enzymes: DNMT1, DNMT3a, DNMT3b, HDAC2, HDAC5 and CPB in scopolamine induced amnesic mice after treatment with bacoside rich extract of Bacopa monniera (BA) and BA encapsulated in lactoferrin conjugated PEG-PLA-PCL-OH based polymersomes (BAN). We observed remarkable difference between the results obtained after the treatment with BA and BAN. Interestingly BAN was found to be more efficient in downregulating DNA methylation and histone chain deacetylation. Scopolamine treatment showed up-regulation of DNMT1 expression in qRT-PCR by 3.14-fold as compared to the control, which was considerably decreased by 1.5-fold after treatment with BA and remarkably decreased 0.11-fold by BAN treatment. Scopolamine treatment up-regulated the expression of DNMT3a by 1.6-fold while for DNMT3b by 3.13-fold. In DNMT3a and DNMT3b the fold change decreased to 0.64 and 0.76 after BA treatment, whereas the BAN treatment further down-regulated to 0.32- and 0.63-fold, respectively. Similarly scopolamine up-regulated HDAC2 and HDAC5 by 3.12 fold and 3.64-fold, respectively. BA treatment reversed the changes by reducing HDAC2 mRNA to 0.89-fold and HDAC5 mRNA 0.83-fold. BAN further reduced expression of HDAC2 further to 0.39-fold and HDAC5 to 0.31-fold. On the other hand scopolamine down-regulated CBP mRNA expression by 0.28-fold and increased by 1.09 after BA treatment. BAN significantly increased the CPB expression by 1.65-fold as compared to BA treatment. These findings were consolidated by DNMT and HDAC enzyme activity assay, methylation in the promoter region of the memory related genes: ARC and BDNF and Dot blot assay for DNA methylation. The percent activity increase of DNMT and HDAC after scopolamine administration was 375.74 and 240.90 respectively. After treatment with BA the downfall in percent activity was observed as 167.99 in DMNT and 130.57 in HDAC. BAN treatment further decreased the percent enzyme activity of DNMT and HDAC significantly by 30.0 and 61.81 respectively. The potency of BAN in reversing the epigenetic changes of scopolamine induced amnesic mouse brain, can be attributed to the brain specific delivery of BA through polymersomes which are able to cross the blood brain barrier (BBB) via receptor mediated endocytosis.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.