Abstract Title:

Growth inhibitory effects of flavonoids in human thyroid cancer cell lines.

Abstract Source:

Thyroid. 1999 Apr;9(4):369-76. PMID: 10319943

Abstract Author(s):

F Yin, A E Giuliano, A J Van Herle

Article Affiliation:

Division of Endocrinology, UCLA School of Medicine, Los Angeles, California 90024, USA.


Previous studies have indicated that flavonoids exhibit antiproliferative properties on some hormone-dependent cancer cell lines, such as breast and prostate cancer. In the present study, the effects of some selected flavonoids, genistein, apigenin, luteolin, chrysin, kaempferol, and biochanin A on human thyroid carcinoma cell lines, UCLA NPA-87-1 (NPA) (papillary carcinoma), UCLA RO-82W-1 (WRO) (follicular carcinoma), and UCLA RO-81A-1 (ARO) (anaplastic carcinoma) have been examined. Among the flavonoids tested, apigenin and luteolin are the most potent inhibitors of these cell lines with IC50 (concentration at which cell proliferation was inhibited by 50%) values ranging from 21.7 microM to 32.1 microM. The cells were viable at these concentrations. Using NPA cells known to be estrogen receptor positive (ER+), it was shown that no significant [3H]-E2 displacement occurred with these flavonoids at the IC50 concentration. In WRO cells that are known to have an antiestrogen binding site (AEBS), biochanin A caused a stronger inhibitory growth effect (IC50 = 64.1 microM) than in NPA and ARO cells. In addition, it was observed that biochanin A has an appreciable binding affinity for the AEBS as indicated by the displacement of [3H]-tamoxifen from the WRO cells. In summary, flavonoids have potent antiproliferative activity in vitro against various human thyroid cancer cell lines. The inhibitory activity of certain flavonoid compounds may be mediated via the AEBS and/or type II EBS. The observation that ARO cells that lack both the AEBS and the ER are effectively inhibited by apigenin and luteolin suggest that other mechanisms of action are operative as well. The present study suggests that flavonoids may represent a new class of therapeutic agents in the management of thyroid cancer.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.