n/a
Article Publish Status: FREE
Abstract Title:

Andrographolide, isolated frominduces apoptosis in monocytic leukemia and multiple myeloma cells via augmentation of reactive oxygen species production.

Abstract Source:

F1000Res. 2021 ;10:542. Epub 2021 Jul 6. PMID: 35528957

Abstract Author(s):

Hiroki Doi, Taei Matsui, Johannes M Dijkstra, Atsushi Ogasawara, Yuki Higashimoto, Seiji Imamura, Tamae Ohye, Hiromu Takematsu, Itsuro Katsuda, Hidehiko Akiyama

Article Affiliation:

Hiroki Doi

Abstract:

: Andrographolide (Andro) is a diterpenoid component of the plantthat is known for its anti-tumor activity against a variety of cancer cells. : We studied the effects of Andro on the viability of the human leukemia monocytic cell line THP-1 and the human multiple myeloma cell line H929. Andro was compared with cytosine arabinoside (Ara-C) and vincristine (VCR), which are well-established therapeutics against hematopoietic tumors. The importance of reactive oxygen species (ROS) production for the toxicity of each agent was investigated by using an inhibitor of ROS production, N-acetyl-L-cysteine (NAC).  :  Andro reduced the viability of THP-1 and H929 in a dose-dependent manner. H929 viability was highly susceptible to Andro, although only slightly susceptible to Ara-C. The agents Andro, Ara-C, and VCR each induced apoptosis, as shown by cellular shrinkage, DNA fragmentation, and increases in annexin V-binding, caspase-3/7 activity, ROS production, and mitochondrial membrane depolarization. Whereas Ara-C and VCR increased the percentages of cells in the G0/G1 and G2/M phases, respectively, Andro showed little or no detectable effect on cell cycle progression. The apoptotic activities of Androwere largely suppressed by NAC, an inhibitor of ROS production, whereas NAC hardly affected the apoptotic activities of Ara-C and VCR. : Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells, underlining its potential as a therapeutic agent for treating hematopoietic tumors. The high toxicity for (thus forming: The high toxicity for H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.) H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.